Source code for collie.model.mlp_matrix_factorization

from functools import partial
from typing import Callable, Dict, Optional, Tuple, Union

import torch
from torch import nn
from torch.optim.lr_scheduler import ReduceLROnPlateau

from collie.model.base import BasePipeline, INTERACTIONS_LIKE_INPUT, ScaledEmbedding, ZeroEmbedding
from collie.utils import get_init_arguments, merge_docstrings


[docs]class MLPMatrixFactorizationModel(BasePipeline): # NOTE: the full docstring is merged in with ``BasePipeline``'s using ``merge_docstrings``. # Only the description of new or changed parameters are included in this docstring """ Training pipeline for the matrix factorization model with MLP layers instead of a final dot product (like in ``MatrixFactorizationModel``). ``MLPMatrixFactorizationModel`` models have an embedding layer for both users and items which, are concatenated and sent through a MLP to output a single float ranking value. All ``MLPMatrixFactorizationModel`` instances are subclasses of the ``LightningModule`` class provided by PyTorch Lightning. This means to train a model, you will need a ``collie.model.CollieTrainer`` object, but the model can be saved and loaded without this ``Trainer`` instance. Example usage may look like: .. code-block:: python from collie.model import CollieTrainer, MLPMatrixFactorizationModel model = MLPMatrixFactorizationModel(train=train) trainer = CollieTrainer(model) trainer.fit(model) model.eval() # do evaluation as normal with ``model`` model.save_model(filename='model.pth') new_model = MLPMatrixFactorizationModel(load_model_path='model.pth') # do evaluation as normal with ``new_model`` Parameters ---------- embedding_dim: int Number of latent factors to use for user and item embeddings num_layers: int Number of MLP layers to apply. Each MLP layer will have its input dimension calculated with the formula ``embedding_dim * (2 ** (``num_layers`` - ``current_layer_number``))`` dropout_p: float Probability of dropout on the linear layers bias_lr: float Bias terms learning rate. If 'infer', will set equal to ``lr`` optimizer: torch.optim or str If a string, one of the following supported optimizers: * ``'sgd'`` (for ``torch.optim.SGD``) * ``'adam'`` (for ``torch.optim.Adam``) bias_optimizer: torch.optim or str Optimizer for the bias terms. This supports the same string options as ``optimizer``, with the addition of ``infer``, which will set the optimizer equal to ``optimizer``. If ``bias_optimizer`` is ``None``, only a single optimizer will be created for all model parameters y_range: tuple Specify as ``(min, max)`` to apply a sigmoid layer to the output score of the model to get predicted ratings within the range of ``min`` and ``max`` """ def __init__(self, train: INTERACTIONS_LIKE_INPUT = None, val: INTERACTIONS_LIKE_INPUT = None, embedding_dim: int = 30, num_layers: int = 3, dropout_p: float = 0.0, lr: float = 1e-3, bias_lr: Optional[Union[float, str]] = 1e-2, lr_scheduler_func: Optional[torch.optim.lr_scheduler._LRScheduler] = partial( ReduceLROnPlateau, patience=1, verbose=True ), weight_decay: float = 0.0, optimizer: Union[str, torch.optim.Optimizer] = 'adam', bias_optimizer: Optional[Union[str, torch.optim.Optimizer]] = 'sgd', loss: Union[str, Callable[..., torch.tensor]] = 'hinge', metadata_for_loss: Optional[Dict[str, torch.tensor]] = None, metadata_for_loss_weights: Optional[Dict[str, float]] = None, y_range: Optional[Tuple[float, float]] = None, load_model_path: Optional[str] = None, map_location: Optional[str] = None): super().__init__(**get_init_arguments()) __doc__ = merge_docstrings(BasePipeline, __doc__, __init__) def _setup_model(self, **kwargs) -> None: """ Method for building model internals that rely on the data passed in. This method will be called after `prepare_data`. """ self.user_biases = ZeroEmbedding(num_embeddings=self.hparams.num_users, embedding_dim=1) self.item_biases = ZeroEmbedding(num_embeddings=self.hparams.num_items, embedding_dim=1) self.user_embeddings = ScaledEmbedding(num_embeddings=self.hparams.num_users, embedding_dim=self.hparams.embedding_dim) self.item_embeddings = ScaledEmbedding(num_embeddings=self.hparams.num_items, embedding_dim=self.hparams.embedding_dim) mlp_modules = [] input_size = self.hparams.embedding_dim * 2 for i in range(self.hparams.num_layers): next_input_size = ( int( self.hparams.embedding_dim * 2 * ((self.hparams.num_layers - i) / (self.hparams.num_layers + 1)) ) ) mlp_modules.append(nn.Linear(input_size, next_input_size)) mlp_modules.append(nn.ReLU()) mlp_modules.append(nn.Dropout(p=self.hparams.dropout_p)) input_size = next_input_size self.mlp_layers = nn.Sequential(*mlp_modules) self.predict_layer = nn.Linear(next_input_size, 1)
[docs] def forward(self, users: torch.tensor, items: torch.tensor) -> torch.tensor: """ Forward pass through the model, roughly: ```prediction = MLP(concatenate(user_embedding * item_embedding)) + user_bias + item_bias``` If dropout is added, it is applied for the two embeddings and not the biases. Parameters ---------- users: tensor, 1-d Array of user indices items: tensor, 1-d Array of item indices Returns ------- preds: tensor, 1-d Predicted ratings or rankings """ user_embeddings = self.user_embeddings(users) item_embeddings = self.item_embeddings(items) concatenated_embeddings = torch.cat((user_embeddings, item_embeddings), -1) mlp_output = torch.sigmoid( self.predict_layer( self.mlp_layers(concatenated_embeddings) ) ).squeeze() preds = ( mlp_output + self.user_biases(users).squeeze(1) + self.item_biases(items).squeeze(1) ) if self.hparams.y_range is not None: preds = ( torch.sigmoid(preds) * (self.hparams.y_range[1] - self.hparams.y_range[0]) + self.hparams.y_range[0] ) return preds
def _get_item_embeddings(self) -> torch.tensor: """Get item embeddings on device.""" return self.item_embeddings.weight.data def _get_user_embeddings(self) -> torch.tensor: """Get user embeddings on device.""" return self.user_embeddings.weight.data