
collie
Release 1.3.1

ShopRunner Data Science Team

Mar 31, 2023

API REFERENCE

1 Interactions 3
1.1 Datasets . 8

1.1.1 Implicit Interactions Dataset . 8
1.1.2 Explicit Interactions Dataset . 9
1.1.3 HDF5 Interactions Dataset . 11

1.2 DataLoaders . 12
1.2.1 Interactions DataLoader . 12
1.2.2 Approximate Negative Sampling Interactions DataLoader 14
1.2.3 HDF5 Approximate Negative Sampling Interactions DataLoader 18

2 Cross Validation 21
2.1 Random Split . 22
2.2 Stratified Split . 22

3 Losses 25
3.1 Standard Losses . 28

3.1.1 BPR Loss . 28
3.1.2 Hinge Loss . 29

3.2 Adaptive Losses . 30
3.2.1 Adaptive BPR Loss . 30
3.2.2 Adaptive Hinge Loss . 31
3.2.3 WARP Loss . 32

4 Models 35
4.1 Standard Models . 37

4.1.1 Matrix Factorization Model . 37
4.1.2 Multilayer Perceptron Matrix Factorization Model . 41
4.1.3 Nonlinear Embeddings Matrix Factorization Model . 44
4.1.4 Collaborative Metric Learning Model . 47
4.1.5 Neural Collaborative Filtering (NeuCF) . 50
4.1.6 Deep Factorization Machine (DeepFM) . 53

4.2 Hybrid Models . 56
4.2.1 Hybrid Pretrained Matrix Factorization Model . 56

4.3 Multi-Stage Models . 60
4.3.1 Cold Start Matrix Factorization Model . 60
4.3.2 Hybrid Matrix Factorization Model . 63

4.4 Trainers . 68
4.4.1 PyTorch Lightning Trainer . 68
4.4.2 Non- PyTorch Lightning Trainer . 77

4.5 Model Templates . 79

i

4.5.1 Base Collie Pipeline Template . 79
4.5.2 Base Collie Multi-Stage Pipeline Template . 83

4.6 Layers . 86
4.6.1 Scaled Embedding . 86
4.6.2 Zero Embedding . 87

5 Evaluation Metrics 89
5.1 Evaluate in Batches . 89

5.1.1 Implicit Evaluate in Batches . 89
5.1.2 Explicit Evaluate in Batches . 90

5.2 Implicit Metrics . 91
5.2.1 AUC . 91
5.2.2 MAP@K . 92
5.2.3 MRR . 92

6 Utility Functions 93
6.1 Create Ratings Matrix . 93
6.2 DataFrame to Interactions . 93
6.3 Convert to Implicit Ratings . 94
6.4 Remove Users With Fewer Than n Interactions . 94
6.5 Pandas DataFrame to HDF5 Format . 95
6.6 DataFrame to HTML . 95
6.7 Timer Class . 96
6.8 Truncated Normal Initialization . 96

7 MovieLens Functions 97
7.1 Get MovieLens 100K Data . 97

7.1.1 Read MovieLens 100K Interactions Data . 97
7.1.2 Read MovieLens 100K Item Data . 98
7.1.3 Read MovieLens 100K Posters Data . 99
7.1.4 Format MovieLens 100K Item Metadata Data . 99
7.1.5 Format MovieLens 100K User Metadata Data . 100

7.2 MovieLens Model Training Pipeline . 100
7.3 Visualize MovieLens Predictions . 101

8 Tutorials 103

9 Contributing and Making PRs 105
9.1 How to Contribute . 105
9.2 Pull Requests . 105

9.2.1 Steps . 105
9.2.2 PR Checklist . 106
9.2.3 Style Guidelines . 106

10 Contributor Covenant Code of Conduct 107
10.1 Our Pledge . 107
10.2 Our Standards . 107
10.3 Enforcement Responsibilities . 108
10.4 Scope . 108
10.5 Enforcement . 108
10.6 Enforcement Guidelines . 108

10.6.1 1. Correction . 108
10.6.2 2. Warning . 108
10.6.3 3. Temporary Ban . 109
10.6.4 4. Permanent Ban . 109

ii

10.7 Attribution . 109

11 collie 111
11.1 Installation . 112
11.2 Quick Start . 112

11.2.1 Implicit Data . 112
11.2.2 Explicit Data . 113

11.3 Comparison With Other Open-Source Recommendation Libraries 114
11.4 Development . 115

11.4.1 Run on a GPU: . 115
11.4.2 Start JupyterLab . 115
11.4.3 Unit Tests . 116
11.4.4 Docs . 116

Index 117

iii

iv

collie, Release 1.3.1

Welcome to the Collie docs!

These docs are meant to be both readable and comprehensive. For the best understanding of the library, we suggest
reading the docs in order, starting with Interactions.

API REFERENCE 1

collie, Release 1.3.1

2 API REFERENCE

CHAPTER

ONE

INTERACTIONS

What are Interactions?
The Interactions object is at the core of how data loading and retrieval works in Collie models.

An Interactions object is, in its simplest form, a torch.data.Dataset wrapper around a scipy.sparse.
coo_matrix that supports iterating and batching data during model training. We supplement this with data consistency
checks during initialization to catch potential errors sooner, a high-throughput and memory-efficient form of negative
sampling, and a simple API. Indexing an Interactions object returns a user ID and an item ID that the user has
interacted with, as well as an O(1) negative sample of item ID(s) a user has not interacted with, supporting the implicit
loss functions built into Collie.

import pandas as pd

from collie.interactions import Interactions

df = pd.DataFrame(data={'user_id': [0, 0, 0, 1, 1, 2],
'item_id': [0, 1, 2, 3, 4, 5]})

interactions = Interactions(users=df['user_id'], items=df['item_id'], num_negative_
→˓samples=2)

for _ in range(3):
print(interactions[0])

output structure: ((user IDs, positive item IDs), negative items IDs)
notice all negative item IDs will be true negatives for user ``0``, e.g.
((0, 0), array([5., 3.]))
((0, 0), array([5., 4.]))
((0, 0), array([3., 5.]))

We can see this same idea holds when we instead create an InteractionsDataLoader, as such:

import pandas as pd

from collie.interactions import InteractionsDataLoader

df = pd.DataFrame(data={'user_id': [0, 0, 0, 1, 1, 2],
'item_id': [0, 1, 2, 3, 4, 5]})

interactions_loader = InteractionsDataLoader(
users=df['user_id'], items=df['item_id'], num_negative_samples=2

(continues on next page)

3

collie, Release 1.3.1

(continued from previous page)

)

for batch in interactions_loader:
print(batch)

output structure: [[user IDs, positive item IDs], negative items IDs]
users and positive items IDs is now a tensor of shape ``batch_size`` and
negative items IDs is now a tensor of shape ``batch_size x num_negative_samples``
notice all negative item IDs will still be true negatives, e.g.
[[tensor([0, 0, 0, 1, 1, 2], dtype=torch.int32),
tensor([0, 1, 2, 3, 4, 5], dtype=torch.int32)],

tensor([[4., 5.],
[3., 5.],
[4., 5.],
[0., 1.],
[5., 0.],
[3., 4.]])]

Once data is in an Interactions form, you can easily perform data splits, train and evaluate a model, and much more.
See Cross Validation and Models documentation for more information on this.

How can I speed up Interactions data loading?
While an Interactions object works out-of-the-box with a torch.data.DataLoader, such as the included
InteractionsDataLoader, sampling true negatives for each Interactions element can become costly as the number
of items grows. In this situation, it might be desirable to trade exact negative sampling for a faster, approximate sam-
pler. For these scenarios, we use the ApproximateNegativeSamplingInteractionsDataLoader, an extension of
the more traditional InteractionsDataLoader that samples data in batches, forgoing the expensive concatenation
of individual data points an InteractionsDataLoader must do for each batch. Here, negative samples are simply
returned as a collection of randomly sampled item IDs, meaning it is possible that a negative item ID returned for a user
can actually be an item a user had positively interacted with. When the number of items is large, though, this scenario
is increasingly rare, and the speedup benefit is worth the slight performance hit.

import pandas as pd

from collie.interactions import ApproximateNegativeSamplingInteractionsDataLoader

df = pd.DataFrame(data={'user_id': [0, 0, 0, 1, 1, 2],
'item_id': [0, 1, 2, 3, 4, 5]})

interactions_loader = ApproximateNegativeSamplingInteractionsDataLoader(
users=df['user_id'], items=df['item_id'], num_negative_samples=2

)

for batch in interactions_loader:
print(batch)

output structure: [[user IDs, positive item IDs], "negative" items IDs]
users and positive items IDs is now a tensor of shape ``batch_size`` and
negative items IDs is now a tensor of shape ``batch_size x num_negative_samples``
notice negative item IDs will *not* always be true negatives now, e.g.
[[tensor([0, 0, 0, 1, 1, 2], dtype=torch.int32),
tensor([0, 1, 2, 3, 4, 5], dtype=torch.int32)],

(continues on next page)

4 Chapter 1. Interactions

collie, Release 1.3.1

(continued from previous page)

tensor([[4, 5],
[1, 2],
[4, 2],
[3, 5],
[4, 0],
[4, 3]])]

interactions = interactions_loader.interactions
use this for cross validation, evaluation, etc.

What if my data cannot fit in memory?
For datasets that are too large to fit in memory, Collie includes the HDF5InteractionsDataLoader
(which uses a HDF5Interactions dataset at its base, sharing many of the same features and methods
as an Interactions object). A HDF5InteractionsDataLoader applies the same principles behind the
ApproximateNegativeSamplingInteractionsDataLoader, but for data stored on disk in a HDF5 format. The
main drawback to this approach is that when shuffle=True, data will only be shuffled within batches (as opposed
to the true shuffle in ApproximateNegativeSamplingInteractionsDataLoader). For sufficiently large enough
data, this effect on model performance should be negligible.

import pandas as pd

from collie.interactions import HDF5InteractionsDataLoader
from collie.utils import pandas_df_to_hdf5

we'll write out a sample DataFrame to HDF5 format for this example
df = pd.DataFrame(data={'user_id': [0, 0, 0, 1, 1, 2],

'item_id': [0, 1, 2, 3, 4, 5]})
pandas_df_to_hdf5(df=df, out_path='sample_hdf5.h5')

interactions_loader = HDF5InteractionsDataLoader(
hdf5_path='sample_hdf5.h5',
user_col='user_id',
item_col='item_id',
num_negative_samples=2,

)

for batch in interactions_loader:
print(batch)

output structure: [[user IDs, positive item IDs], "negative" items IDs]
users and positive items IDs is now a tensor of shape ``batch_size`` and
negative items IDs is now a tensor of shape ``batch_size x num_negative_samples``
notice negative item IDs will *not* always be true negatives now, e.g.
[[tensor([0, 0, 0, 1, 1, 2], dtype=torch.int32),
tensor([0, 1, 2, 3, 4, 5], dtype=torch.int32)],

tensor([[5, 4],
[4, 5],
[5, 2],
[4, 3],
[4, 2],
[1, 3]])]

5

collie, Release 1.3.1

The table below shows the time differences to train a MatrixFactorizationModel for a single epoch on data using
default parameters on the GPU on a p3.2xlarge EC2 instance1.

DataLoader Type Time to Train a Single Epoch
InteractionsDataLoader 1min 25s
ApproximateNegativeSamplingInteractionsDataLoader 1min 8s
HDF5InteractionsDataLoader 1min 10s

What if my data has explicit ratings in it?
Thus far, we’ve only discussed the scenario in which you have data without an explicit indicator showing to what degree
a user loved an item. When you do have that data (i.e. star ratings for product reviews, number of times a user has
interacted with an item, etc.), you have explicit data. Luckily, as of version 0.6.0 of Collie, this is now fully supported
within the library, with the only differences between an explicit and implicit pipeline being 1) the dataset definition
(detailed below) and 2) evaluation (detailed in Evaluation Metrics).

Note the similarities in the explicit example below with the examples shown thus far:

import pandas as pd

from collie.interactions import ExplicitInteractions

explicit_df = pd.DataFrame(data={'user_id': [0, 0, 0, 1, 1, 2],
'item_id': [0, 1, 2, 3, 4, 5],
'ratings': [1, 2, 3, 4, 5, 3.5]})

explicit_interactions = ExplicitInteractions(users=explicit_df['user_id'],
items=explicit_df['item_id'],
ratings=explicit_df['ratings'])

for _ in range(3):
print(explicit_interactions[0])

print('\n-----\n')

(continues on next page)

1 Welcome to a detailed footnote about this experiment!
• The MovieLens 10M data was preprocessed using Collie utility functions in Utility Functions that keeps all ratings above a 4 and removes

users with fewer than 3 interactions. This left us with 5,005,398 total interactions.

• For a much faster training time, we recommend setting sparse=True (see the point below this) in the model definition and using a larger
batch size with pin_memory=True in the DataLoader.

• Since we used default parameters, the embeddings of the MatrixFactorizationModel were not sparse. Had we used sparse embeddings
and a Sparse Adam optimizer, the table would show:

DataLoader Type Time to Train a Single Epoch
InteractionsDataLoader 1min 21s
ApproximateNegativeSamplingInteractionsDataLoader 1min 4s
HDF5InteractionsDataLoader 1min 7s

These times are more dramatically different with larger datasets (1M+ items). While these options are certainly faster, having sparse
settings be the default limits the optimizer options and general flexibility of customizing an architecture, since not all PyTorch
operations support sparse layers. For that reason, we made the default parameters non-sparse, which works best for small-sized
datasets.

• We have also noticed drastic changes in training time depending on the version of PyTorch used. While we used torch@1.8.0 here, we have
noticed the fastest training times using torch@1.6.0. If you understand why this is, make a PR updating these docs with that information!

6 Chapter 1. Interactions

collie, Release 1.3.1

(continued from previous page)

for idx in range(len(explicit_interactions)):
print(explicit_interactions[idx])

output structure: (user IDs, positive item IDs, ratings)
notice that unlike implicit interactions, there is no negative sampling going
on under the hood, meaning this printout will always be deterministic
(0, 0, 1.0)
(0, 0, 1.0)
(0, 0, 1.0)

(0, 0, 1.0)
(0, 1, 2.0)
(0, 2, 3.0)
(1, 3, 4.0)
(1, 4, 5.0)
(2, 5, 3.5)

Once the ExplicitInteractions dataset is defined, you can use the built-in InteractionsDataLoader to batch
and iterate through the data!

import pandas as pd

from collie.interactions import ExplicitInteractions, InteractionsDataLoader

the same setup code from the code snippet above
explicit_df = pd.DataFrame(data={'user_id': [0, 0, 0, 1, 1, 2],

'item_id': [0, 1, 2, 3, 4, 5],
'ratings': [1, 2, 3, 4, 5, 3.5]})

explicit_interactions = ExplicitInteractions(users=explicit_df['user_id'],
items=explicit_df['item_id'],
ratings=explicit_df['ratings'])

explicit_interactions_loader = InteractionsDataLoader(interactions=explicit_interactions)

for batch in explicit_interactions_loader:
print(batch)

output structure: [user IDs, positive item IDs, ratings]
[tensor([0, 0, 0, 1, 1, 2], dtype=torch.int32),
tensor([0, 1, 2, 3, 4, 5], dtype=torch.int32),
tensor([1.0000, 2.0000, 3.0000, 4.0000, 5.0000, 3.5000], dtype=torch.float64)]

All Collie models support both implicit and explicit data, and can be instantiating by either passing in the
Interactions/ExplicitInteractions data or the dataset wrapped in a DataLoader. See Models for more details
on this.

7

collie, Release 1.3.1

1.1 Datasets

1.1.1 Implicit Interactions Dataset

class collie.interactions.Interactions(mat: Optional[Union[coo_matrix, array]] = None, users:
Optional[Iterable[int]] = None, items: Optional[Iterable[int]] =
None, ratings: Optional[Iterable[int]] = None,
num_negative_samples: int = 10, allow_missing_ids: bool =
False, remove_duplicate_user_item_pairs: bool = True,
num_users: int = 'infer', num_items: int = 'infer',
check_num_negative_samples_is_valid: bool = True,
max_number_of_samples_to_consider: int = 200, seed:
Optional[int] = None)

Bases: BaseInteractions

PyTorch Dataset for implicit user-item interactions data.

If mat is provided, the Interactions instance will act as a wrapper for a sparse matrix in COOrdinate format,
typically looking like:

• Users comprising the rows

• Items comprising the columns

• Ratings given by that user for that item comprising the elements of the matrix

Interactions can be instantiated instead by passing in single arrays with corresponding user_ids, item_ids, and
ratings (by default, set to 1 for implicit recommenders) values with the same functionality as a matrix. Note that
with this approach, the number of users and items will be the maximum values in those two columns, respectively,
and it is expected that all integers between 0 and the maximum ID should appear somewhere in the data.

By default, exact negative sampling will be used during each __getitem__ call. To use approximate negative
sampling, set max_number_of_samples_to_consider = 0. This will avoid building a positive item lookup
dictionary during initialization.

Unlike in ExplicitInteractions, we rely on negative sampling for implicit data. Each __getitem__ call
will thus return a nested tuple containing user IDs, item IDs, and sampled negative item IDs. This nested vs.
non-nested structure is key for the model to determine where it should be implicit or explicit. Use the table below
for reference:

__getitem__ Format Expected Meaning Model Type
((X, Y), Z) ((user IDs, item IDs), negative item IDs) Implicit
(X, Y, Z) (user IDs, item IDs, ratings) Explicit

Parameters
• mat (scipy.sparse.coo_matrix or numpy.array, 2-dimensional) – Interactions

matrix, which, if provided, will be used instead of users, items, and ratings arguments

• users (Iterable[int], 1-d) – Array of user IDs, starting at 0

• items (Iterable[int], 1-d) – Array of corresponding item IDs to users, starting at 0

• ratings (Iterable[int], 1-d) – Array of corresponding ratings to both users and
items. If None, will default to each user in user interacting with an item with a rating
value of 1

8 Chapter 1. Interactions

collie, Release 1.3.1

• num_negative_samples (int) – Number of negative samples to return with each
__getitem__ call

• allow_missing_ids (bool) – If False, will check that both users and items contain
each integer from 0 to the maximum value in the array. This check only applies when ini-
tializing an Interactions instance using 1-dimensional arrays users and items

• remove_duplicate_user_item_pairs (bool) – Will check for and remove any duplicate
user, item ID pairs from the Interactions matrix during initialization. Note that this will
create a second sparse matrix held in memory to efficiently check, which could cause memory
concerns for larger data. If you are sure that there are no duplicated, user, item ID pairs, set
to False

• num_users (int) – Number of users in the dataset. If num_users == 'infer', this will
be set to the mat.shape[0] or max(users) + 1, depending on the input

• num_items (int) – Number of items in the dataset. If num_items == 'infer', this will
be set to the mat.shape[1] or max(items) + 1, depending on the input

• check_num_negative_samples_is_valid (bool) – Check that
num_negative_samples is less than the maximum number of items a user has in-
teracted with. If it is not, then for all users who have fewer than num_negative_samples
items not interacted with, a random sample including positive items will be returned as
negative

• max_number_of_samples_to_consider (int) – Number of samples to try for a given
user before returning an approximate negative sample. This should be greater than
num_negative_samples. If set to 0, approximate negative sampling will be used by default
in __getitem__ and a positive item lookup dictionary will NOT be built

• seed (int) – Seed for random sampling

head(n: int = 5)→ array
Return the first n rows of the dense matrix as a np.array, 2-d.

tail(n: int = 5)→ array
Return the last n rows of the dense matrix as a np.array, 2-d.

toarray()→ array
Transforms BaseInteractions instance sparse matrix to np.array, 2-d.

todense()→ matrix
Transforms BaseInteractions instance sparse matrix to np.matrix, 2-d.

1.1.2 Explicit Interactions Dataset

class collie.interactions.ExplicitInteractions(mat: Optional[Union[coo_matrix, array]] = None,
users: Optional[Iterable[int]] = None, items:
Optional[Iterable[int]] = None, ratings:
Optional[Iterable[int]] = None, allow_missing_ids:
bool = False, remove_duplicate_user_item_pairs: bool
= True, num_users: int = 'infer', num_items: int =
'infer')

Bases: BaseInteractions

PyTorch Dataset for explicit user-item interactions data.

1.1. Datasets 9

collie, Release 1.3.1

If mat is provided, the Interactions instance will act as a wrapper for a sparse matrix in COOrdinate format,
typically looking like:

• Users comprising the rows

• Items comprising the columns

• Ratings given by that user for that item comprising the elements of the matrix

Interactions can be instantiated instead by passing in single arrays with corresponding user_ids, item_ids,
and ratings values with the same functionality as a matrix. Note that with this approach, the number of users and
items will be the maximum values in those two columns, respectively, and it is expected that all integers between
0 and the maximum ID should appear somewhere in the user or item ID data.

Unlike in Interactions, there is no need for negative sampling for explicit data. Each __getitem__ call will
thus return a single, non-nested tuple containing user IDs, item IDs, and ratings. This nested vs. non-nested
structure is key for the model to determine where it should be implicit or explicit. Use the table below for
reference:

__getitem__ Format Expected Meaning Model Type
((X, Y), Z) ((user IDs, item IDs), negative item IDs) Implicit
(X, Y, Z) (user IDs, item IDs, ratings) Explicit

Parameters
• mat (scipy.sparse.coo_matrix or numpy.array, 2-dimensional) – Interactions

matrix, which, if provided, will be used instead of users, items, and ratings arguments

• users (Iterable[int], 1-d) – Array of user IDs, starting at 0

• items (Iterable[int], 1-d) – Array of corresponding item IDs to users, starting at 0

• ratings (Iterable[int], 1-d) – Array of corresponding ratings to both users and
items. If None, will default to each user in user interacting with an item with a rating
value of 1

• allow_missing_ids (bool) – If False, will check that both users and items contain
each integer from 0 to the maximum value in the array. This check only applies when initial-
izing an ExplicitInteractions instance using 1-dimensional arrays users and items

• remove_duplicate_user_item_pairs (bool) – Will check for and remove any duplicate
user, item ID pairs from the ExplicitInteractionsmatrix during initialization. Note that
this will create a second sparse matrix held in memory to efficiently check, which could cause
memory concerns for larger data. If you are sure that there are no duplicated, user, item ID
pairs, set to False

• num_users (int) – Number of users in the dataset. If num_users == 'infer', this will
be set to the mat.shape[0] or max(users) + 1, depending on the input

• num_items (int) – Number of items in the dataset. If num_items == 'infer', this will
be set to the mat.shape[1] or max(items) + 1, depending on the input

head(n: int = 5)→ array
Return the first n rows of the dense matrix as a np.array, 2-d.

property num_negative_samples: int

Does not exist for explicit data.

tail(n: int = 5)→ array
Return the last n rows of the dense matrix as a np.array, 2-d.

10 Chapter 1. Interactions

collie, Release 1.3.1

toarray()→ array
Transforms BaseInteractions instance sparse matrix to np.array, 2-d.

todense()→ matrix
Transforms BaseInteractions instance sparse matrix to np.matrix, 2-d.

1.1.3 HDF5 Interactions Dataset

class collie.interactions.HDF5Interactions(hdf5_path: str, user_col: str = 'users', item_col: str =
'items', num_negative_samples: int = 10, num_users: int =
'infer', num_items: int = 'infer', seed: Optional[int] = None,
shuffle: bool = False)

Bases: Dataset

Create an Interactions-like object for data in the HDF5 format that might be too large to fit in memory.

Many of the same features of Interactions are implemented here, with the exception that approximate negative
sampling will always be used.

Parameters
• hdf5_path (str) –

• user_col (str) – Column in HDF5 file with user IDs. IDs must begin at 0

• item_col (str) – Column in HDF5 file with item IDs. IDs must begin at 0

• num_negative_samples (int) – Number of negative samples to return with each
__getitem__ call

• num_users (int) – Number of users in the dataset. If num_users == 'infer' and there
is not a meta key in hdf5_path’s HDF5 dataset, this will be set to the the maximum value
in user_col + 1, found by iterating through the entire dataset

• num_items (int) – Number of items in the dataset. If num_items == 'infer' and there
is not an meta key in hdf5_path’s HDF5 dataset, this will be set to the the maximum value
in item_col + 1, found by iterating through the entire dataset

• seed (int) – Seed for random sampling and shuffling if shuffle is True

• shuffle (bool) – Shuffle data in a batch. For example, if one calls __getitem__ with
start_idx_and_batch_size = (0, 4) and shuffle is False, this will always re-
turn the data at indices 0, 1, 2, 3 in order. However, the same call with shuffle = True
will return a random shuffle of 0, 1, 2, 3 each call. This is recommended for use in a
HDF5InteractionsDataLoader for training data in lieu of true data shuffling

head(n: int = 5)→ DataFrame
Return the first n rows of the underlying pd.DataFrame.

tail(n: int = 5)→ DataFrame
Return the last n rows of the underlying pd.DataFrame.

1.1. Datasets 11

collie, Release 1.3.1

1.2 DataLoaders

1.2.1 Interactions DataLoader

class collie.interactions.InteractionsDataLoader(interactions: Optional[BaseInteractions] = None,
mat: Optional[Union[coo_matrix, array]] = None,
users: Optional[Iterable[int]] = None, items:
Optional[Iterable[int]] = None, ratings:
Optional[Iterable[int]] = None, batch_size: int =
1024, shuffle: bool = False, **kwargs)

Bases: BaseInteractionsDataLoader

A light wrapper around a torch.utils.data.DataLoader for Interactions-type datasets.

For implicit data, batches will be created one-point-at-a-time using exact negative sampling (unless configured
not to in interactions), which is optimal when datasets are smaller (< 1M+ interactions) and model training
speed is not a concern. This is the default DataLoader for Interactions datasets.

For explicit data, negative sampling is not used, but batches will still be created one-point-at-a-time.

Parameters
• interactions (BaseInteractions) – If not provided, an Interactions object will be

created with mat or all of users, items, and ratings

• mat (scipy.sparse.coo_matrix or numpy.array, 2-dimensional) – If
interactions is None, will be used instead of users, items, and ratings argu-
ments to create an Interactions object

• users (Iterable[int], 1-d) – If interactions is None and mat is None, array
of user IDs, starting at 0

• items (Iterable[int], 1-d) – If interactions is None and mat is None, array
of corresponding item IDs to users, starting at 0

• ratings (Iterable[int], 1-d) – If interactions is None and mat is None, ar-
ray of corresponding ratings to both users and items. If None, will default to each user in
user interacting with an item with a rating value of 1

• batch_size (int) – Number of samples per batch to load

• shuffle (bool) – Whether to shuffle the order of data returned or not. This is especially
useful for training data to ensure the model does not overfit to a specific order of data

• **kwargs (keyword arguments) – Relevant keyword arguments will be passed into
Interactions object creation, if interactions is None and the keyword argument
matches one of Interactions.__init__.__code__.co_varnames. All other keyword
arguments will be passed into torch.utils.data.DataLoader: https://pytorch.org/docs/
stable/data.html#torch.utils.data.DataLoader

interactions

Type
Interactions (default) or ExplicitInteractions

Original ``torch.utils.data.DataLoader`` docstring as follows

########

12 Chapter 1. Interactions

https://pytorch.org/docs/stable/data.html#torch.utils.data.DataLoader
https://pytorch.org/docs/stable/data.html#torch.utils.data.DataLoader

collie, Release 1.3.1

Data loader. Combines a dataset and a sampler, and provides an iterable over

the given dataset.

The :class:`~torch.utils.data.DataLoader` supports both map-style and

iterable-style datasets with single- or multi-process loading, customizing

loading order and optional automatic batching (collation) and memory pinning.

See :py:mod:`torch.utils.data` documentation page for more details.

Args

dataset (Dataset): dataset from which to load the data. batch_size (int, optional): how many samples per
batch to load

(default: 1).

shuffle (bool, optional): set to True to have the data reshuffled
at every epoch (default: False).

sampler (Sampler or Iterable, optional): defines the strategy to draw
samples from the dataset. Can be any Iterable with __len__ implemented. If specified, shuffle
must not be specified.

batch_sampler (Sampler or Iterable, optional): like sampler, but
returns a batch of indices at a time. Mutually exclusive with batch_size, shuffle, sampler, and
drop_last.

num_workers (int, optional): how many subprocesses to use for data
loading. 0 means that the data will be loaded in the main process. (default: 0)

collate_fn (Callable, optional): merges a list of samples to form a
mini-batch of Tensor(s). Used when using batched loading from a map-style dataset.

pin_memory (bool, optional): If True, the data loader will copy Tensors
into device/CUDA pinned memory before returning them. If your data elements are a custom type, or
your collate_fn returns a batch that is a custom type, see the example below.

drop_last (bool, optional): set to True to drop the last incomplete batch,
if the dataset size is not divisible by the batch size. If False and the size of dataset is not divisible by
the batch size, then the last batch will be smaller. (default: False)

timeout (numeric, optional): if positive, the timeout value for collecting a batch
from workers. Should always be non-negative. (default: 0)

worker_init_fn (Callable, optional): If not None, this will be called on each
worker subprocess with the worker id (an int in [0, num_workers - 1]) as input, after seeding and
before data loading. (default: None)

generator (torch.Generator, optional): If not None, this RNG will be used
by RandomSampler to generate random indexes and multiprocessing to generate base_seed for work-
ers. (default: None)

prefetch_factor (int, optional, keyword-only arg): Number of batches loaded
in advance by each worker. 2 means there will be a total of 2 * num_workers batches prefetched across
all workers. (default: 2)

persistent_workers (bool, optional): If True, the data loader will not shutdown
the worker processes after a dataset has been consumed once. This allows to maintain the workers
Dataset instances alive. (default: False)

1.2. DataLoaders 13

collie, Release 1.3.1

pin_memory_device (str, optional): the data loader will copy Tensors
into device pinned memory before returning them if pin_memory is set to true.

Warning: If the spawn start method is used, worker_init_fn cannot be an unpicklable object, e.g., a
lambda function. See multiprocessing-best-practices on more details related to multiprocessing in PyTorch.

Warning: len(dataloader) heuristic is based on the length of the sampler used. When dataset is an
IterableDataset, it instead returns an estimate based on len(dataset) / batch_size, with proper
rounding depending on drop_last, regardless of multi-process loading configurations. This represents the
best guess PyTorch can make because PyTorch trusts user dataset code in correctly handling multi-process
loading to avoid duplicate data.

However, if sharding results in multiple workers having incomplete last batches, this estimate can still be
inaccurate, because (1) an otherwise complete batch can be broken into multiple ones and (2) more than one
batch worth of samples can be dropped when drop_last is set. Unfortunately, PyTorch can not detect such
cases in general.

See `Dataset Types`_ for more details on these two types of datasets and how IterableDataset interacts
with `Multi-process data loading`_.

Warning: See reproducibility, and dataloader-workers-random-seed, and data-loading-randomness notes
for random seed related questions.

property mat: coo_matrix

Sparse COO matrix of interactions.

property num_interactions: int

Number of interactions in interactions.

property num_items: int

Number of items in interactions.

property num_negative_samples: int

Number of negative samples in interactions.

property num_users: int

Number of users in interactions.

1.2.2 Approximate Negative Sampling Interactions DataLoader

14 Chapter 1. Interactions

collie, Release 1.3.1

class collie.interactions.ApproximateNegativeSamplingInteractionsDataLoader(interactions: Op-
tional[Interactions]
= None, mat: Op-
tional[Union[coo_matrix,
array]] = None,
users: Op-
tional[Iterable[int]]
= None, items:
Op-
tional[Iterable[int]]
= None, ratings:
Op-
tional[Iterable[int]]
= None,
batch_size: int =
1024, shuffle:
bool = False,
**kwargs)

Bases: BaseInteractionsDataLoader

A computationally more efficient DataLoader for Interactions data using approximate negative sampling
for negative items.

This DataLoader groups __getitem__ calls together into a single operation, which dramatically speeds up a
traditional DataLoader’s process of calling __getitem__ one index at a time, then concatenating them together
before returning. In an effort to batch operations together, all negative samples returned will be approximate,
meaning this does not check if a user has previously interacted with the item. With a sufficient number of
interactions (1M+), we have found a speed increase of 2x at the cost of a 1% reduction in MAP @ 10 performance
compared to InteractionsDataLoader.

For greater efficiency, we disable automated batching by setting the DataLoader’s batch_size
attribute to None. Thus, to access the “true” batch size that the sampler uses, access
ApproximateNegativeSamplingInteractionsDataLoader.approximate_negative_sampler.
batch_size.

Parameters
• interactions (Interactions) – If not provided, an Interactions ob-

ject will be created with mat or all of users, items, and ratings with
max_number_of_samples_to_consider=0

• mat (scipy.sparse.coo_matrix or numpy.array, 2-dimensional) – If
interactions is None, will be used instead of users, items, and ratings argu-
ments to create an Interactions object

• users (Iterable[int], 1-d) – If interactions is None and mat is None, array
of user IDs, starting at 0

• items (Iterable[int], 1-d) – If interactions is None and mat is None, array
of corresponding item IDs to users, starting at 0

• ratings (Iterable[int], 1-d) – If interactions is None and mat is None, ar-
ray of corresponding ratings to both users and items. If None, will default to each user in
user interacting with an item with a rating value of 1

• batch_size (int) – Number of samples per batch to load

• shuffle (bool) – Whether to shuffle the order of data returned or not. This is especially
useful for training data to ensure the model does not overfit to a specific order of data

1.2. DataLoaders 15

collie, Release 1.3.1

• **kwargs (keyword arguments) – Relevant keyword arguments will be passed into
Interactions object creation, if interactions is None and the keyword argument
matches one of Interactions.__init__.__code__.co_varnames. All other keyword
arguments will be passed into torch.utils.data.DataLoader: https://pytorch.org/docs/
stable/data.html#torch.utils.data.DataLoader

interactions

Type
Interactions

Original ``torch.utils.data.DataLoader`` docstring as follows

########

Data loader. Combines a dataset and a sampler, and provides an iterable over

the given dataset.

The :class:`~torch.utils.data.DataLoader` supports both map-style and

iterable-style datasets with single- or multi-process loading, customizing

loading order and optional automatic batching (collation) and memory pinning.

See :py:mod:`torch.utils.data` documentation page for more details.

Args

dataset (Dataset): dataset from which to load the data. batch_size (int, optional): how many samples per
batch to load

(default: 1).

shuffle (bool, optional): set to True to have the data reshuffled
at every epoch (default: False).

sampler (Sampler or Iterable, optional): defines the strategy to draw
samples from the dataset. Can be any Iterable with __len__ implemented. If specified, shuffle
must not be specified.

batch_sampler (Sampler or Iterable, optional): like sampler, but
returns a batch of indices at a time. Mutually exclusive with batch_size, shuffle, sampler, and
drop_last.

num_workers (int, optional): how many subprocesses to use for data
loading. 0 means that the data will be loaded in the main process. (default: 0)

collate_fn (Callable, optional): merges a list of samples to form a
mini-batch of Tensor(s). Used when using batched loading from a map-style dataset.

pin_memory (bool, optional): If True, the data loader will copy Tensors
into device/CUDA pinned memory before returning them. If your data elements are a custom type, or
your collate_fn returns a batch that is a custom type, see the example below.

drop_last (bool, optional): set to True to drop the last incomplete batch,
if the dataset size is not divisible by the batch size. If False and the size of dataset is not divisible by
the batch size, then the last batch will be smaller. (default: False)

timeout (numeric, optional): if positive, the timeout value for collecting a batch
from workers. Should always be non-negative. (default: 0)

16 Chapter 1. Interactions

https://pytorch.org/docs/stable/data.html#torch.utils.data.DataLoader
https://pytorch.org/docs/stable/data.html#torch.utils.data.DataLoader

collie, Release 1.3.1

worker_init_fn (Callable, optional): If not None, this will be called on each
worker subprocess with the worker id (an int in [0, num_workers - 1]) as input, after seeding and
before data loading. (default: None)

generator (torch.Generator, optional): If not None, this RNG will be used
by RandomSampler to generate random indexes and multiprocessing to generate base_seed for work-
ers. (default: None)

prefetch_factor (int, optional, keyword-only arg): Number of batches loaded
in advance by each worker. 2 means there will be a total of 2 * num_workers batches prefetched across
all workers. (default: 2)

persistent_workers (bool, optional): If True, the data loader will not shutdown
the worker processes after a dataset has been consumed once. This allows to maintain the workers
Dataset instances alive. (default: False)

pin_memory_device (str, optional): the data loader will copy Tensors
into device pinned memory before returning them if pin_memory is set to true.

Warning: If the spawn start method is used, worker_init_fn cannot be an unpicklable object, e.g., a
lambda function. See multiprocessing-best-practices on more details related to multiprocessing in PyTorch.

Warning: len(dataloader) heuristic is based on the length of the sampler used. When dataset is an
IterableDataset, it instead returns an estimate based on len(dataset) / batch_size, with proper
rounding depending on drop_last, regardless of multi-process loading configurations. This represents the
best guess PyTorch can make because PyTorch trusts user dataset code in correctly handling multi-process
loading to avoid duplicate data.

However, if sharding results in multiple workers having incomplete last batches, this estimate can still be
inaccurate, because (1) an otherwise complete batch can be broken into multiple ones and (2) more than one
batch worth of samples can be dropped when drop_last is set. Unfortunately, PyTorch can not detect such
cases in general.

See `Dataset Types`_ for more details on these two types of datasets and how IterableDataset interacts
with `Multi-process data loading`_.

Warning: See reproducibility, and dataloader-workers-random-seed, and data-loading-randomness notes
for random seed related questions.

property mat: coo_matrix

Sparse COO matrix of interactions.

property num_interactions: int

Number of interactions in interactions.

property num_items: int

Number of items in interactions.

property num_negative_samples: int

Number of negative samples in interactions.

1.2. DataLoaders 17

collie, Release 1.3.1

property num_users: int

Number of users in interactions.

1.2.3 HDF5 Approximate Negative Sampling Interactions DataLoader

class collie.interactions.HDF5InteractionsDataLoader(hdf5_interactions:
Optional[HDF5Interactions] = None,
hdf5_path: Optional[str] = None, batch_size:
int = 1024, shuffle: bool = False, **kwargs)

Bases: BaseInteractionsDataLoader

A light wrapper around a torch.utils.data.DataLoader for HDF5 data, with behavior very similar to
ApproximateNegativeSamplingInteractionsDataLoader.

If not provided, a HDF5Interactions dataset will be created as the data for the DataLoader. A custom sampler,
HDF5Sampler, will also be instantiated for the DataLoader to use that allows sampling in batches that make for
faster HDF5 data reads from disk.

While similar to a standard DataLoader, note that when shuffle is True, this will only shuffle the order
of batches and the data within batches to still make for efficient reading of HDF5 data from disk, rather than
shuffling across the entire dataset.

For greater efficiency, we disable automated batching by setting the DataLoader’s batch_size attribute to
None. Thus, to access the “true” batch size that the sampler uses, access HDF5InteractionsDataLoader.
hdf5_sampler.batch_size.

Parameters
• hdf5_interactions (HDF5Interactions) – If provided, will override input argument for
hdf5_path

• hdf5_path (str) – If hdf5_interactions is None, the path to the HDF5 dataset

• batch_size (int) – Number of samples per batch to load

• shuffle (bool) – Whether to shuffle the order of batches returned or not. This is especially
useful for training data to ensure the model does not overfit to a specific order of data. Note
that this will not perform a true shuffle of the data, but shuffle the order of batches. While this
is an approximation of true sampling, it allows us a greater speed up during model training
for a negligible effect on model performance

• **kwargs (keyword arguments) – Relevant keyword arguments will be passed into
HDF5Interactions object creation, if hdf5_interactions is None and the keyword
argument matches one of HDF5Interactions.__init__.__code__.co_varnames. All
other keyword arguments will be passed into torch.utils.data.DataLoader: https:
//pytorch.org/docs/stable/data.html#torch.utils.data.DataLoader

• follows (Original torch.utils.data.DataLoader docstring as) –

• ######## –

• sampler (Data loader. Combines a dataset and a) –

• over (and provides an iterable) –

• dataset. (the given) –

:param The DataLoader supports both map-style and: :param iterable-style datasets with single- or multi-
process loading: :param customizing: :param loading order and optional automatic batching (collation) and

18 Chapter 1. Interactions

https://pytorch.org/docs/stable/data.html#torch.utils.data.DataLoader
https://pytorch.org/docs/stable/data.html#torch.utils.data.DataLoader

collie, Release 1.3.1

memory pinning.: :param See torch.utils.data documentation page for more details.: :param Args: dataset
(Dataset): dataset from which to load the data.

batch_size (int, optional): how many samples per batch to load
(default: 1).

shuffle (bool, optional): set to True to have the data reshuffled
at every epoch (default: False).

sampler (Sampler or Iterable, optional): defines the strategy to draw
samples from the dataset. Can be any Iterable with __len__ implemented. If specified,
shuffle must not be specified.

batch_sampler (Sampler or Iterable, optional): like sampler, but
returns a batch of indices at a time. Mutually exclusive with batch_size, shuffle, sampler,
and drop_last.

num_workers (int, optional): how many subprocesses to use for data
loading. 0 means that the data will be loaded in the main process. (default: 0)

collate_fn (Callable, optional): merges a list of samples to form a
mini-batch of Tensor(s). Used when using batched loading from a map-style dataset.

pin_memory (bool, optional): If True, the data loader will copy Tensors
into device/CUDA pinned memory before returning them. If your data elements are a custom
type, or your collate_fn returns a batch that is a custom type, see the example below.

drop_last (bool, optional): set to True to drop the last incomplete batch,
if the dataset size is not divisible by the batch size. If False and the size of dataset is not divisible
by the batch size, then the last batch will be smaller. (default: False)

timeout (numeric, optional): if positive, the timeout value for collecting a batch
from workers. Should always be non-negative. (default: 0)

worker_init_fn (Callable, optional): If not None, this will be called on each
worker subprocess with the worker id (an int in [0, num_workers - 1]) as input, after seeding
and before data loading. (default: None)

generator (torch.Generator, optional): If not None, this RNG will be used
by RandomSampler to generate random indexes and multiprocessing to generate base_seed for
workers. (default: None)

prefetch_factor (int, optional, keyword-only arg): Number of batches loaded
in advance by each worker. 2 means there will be a total of 2 * num_workers batches prefetched
across all workers. (default: 2)

persistent_workers (bool, optional): If True, the data loader will not shutdown
the worker processes after a dataset has been consumed once. This allows to maintain the workers
Dataset instances alive. (default: False)

pin_memory_device (str, optional): the data loader will copy Tensors
into device pinned memory before returning them if pin_memory is set to true.

Warning: If the spawn start method is used, worker_init_fn cannot be an unpicklable object, e.g., a
lambda function. See multiprocessing-best-practices on more details related to multiprocessing in PyTorch.

Warning: len(dataloader) heuristic is based on the length of the sampler used. When dataset is an
IterableDataset, it instead returns an estimate based on len(dataset) / batch_size, with proper

1.2. DataLoaders 19

collie, Release 1.3.1

rounding depending on drop_last, regardless of multi-process loading configurations. This represents the
best guess PyTorch can make because PyTorch trusts user dataset code in correctly handling multi-process
loading to avoid duplicate data.

However, if sharding results in multiple workers having incomplete last batches, this estimate can still be
inaccurate, because (1) an otherwise complete batch can be broken into multiple ones and (2) more than one
batch worth of samples can be dropped when drop_last is set. Unfortunately, PyTorch can not detect such
cases in general.

See `Dataset Types`_ for more details on these two types of datasets and how IterableDataset interacts
with `Multi-process data loading`_.

Warning: See reproducibility, and dataloader-workers-random-seed, and data-loading-randomness notes
for random seed related questions.

property mat: None

mat attribute is not possible to access in HDF5InteractionsDataLoader.

property num_interactions: int

Number of interactions in interactions.

property num_items: int

Number of items in interactions.

property num_negative_samples: int

Number of negative samples in interactions.

property num_users: int

Number of users in interactions.

20 Chapter 1. Interactions

CHAPTER

TWO

CROSS VALIDATION

Once data is set up in an Interactions dataset, we can perform a data split to evaluate a trained model later. Collie
supports the following two data splits below that share a common API, but differ in split strategy and performance.

from collie.cross_validation import random_split, stratified_split
from collie.interactions import Interactions
from collie.movielens import read_movielens_df
from collie.utils import convert_to_implicit, Timer

EXPERIMENT SETUP
read in MovieLens 100K data
df = read_movielens_df()

convert the data to implicit
df_imp = convert_to_implicit(df)

store data as ``Interactions``
interactions = Interactions(users=df_imp['user_id'],

items=df_imp['item_id'],
allow_missing_ids=True)

t = Timer()

EXPERIMENT BEGIN
train, test = random_split(interactions)
t.timecheck(message='Random split timecheck')

train, test = stratified_split(interactions)
t.timecheck(message='Stratified split timecheck')

as expected, a random split is much faster than a stratified split
Random split timecheck (0.00 min)
Stratified split timecheck (0.04 min)

21

collie, Release 1.3.1

2.1 Random Split

collie.cross_validation.random_split(interactions: BaseInteractions, val_p: float = 0.0, test_p: float =
0.2, processes: Optional[Any] = None, seed: Optional[int] = None)
→ Tuple[BaseInteractions, ...]

Randomly split interactions into training, validation, and testing sets.

This split does NOT guarantee that every user will be represented in both the training and testing datasets. While
much faster than stratified_split, it is not the most representative data split because of this.

Note that this function is not supported for HDF5Interactions objects, since this data split implementation
requires all data to fit in memory. A data split for large datasets should be done using a big data processing
technology, like Spark.

Parameters
• interactions (collie.interactions.BaseInteractions) –

• val_p (float) – Proportion of data used for validation

• test_p (float) – Proportion of data used for testing

• processes (Any) – Ignored, included only for compatability with stratified_splitAPI

• seed (int) – Random seed for splits

Returns
• train_interactions (collie.interactions.BaseInteractions) – Training data of size propor-

tional to 1 - val_p - test_p

• validate_interactions (collie.interactions.BaseInteractions) – Validation data of size pro-
portional to val_p, returned only if val_p > 0

• test_interactions (collie.interactions.BaseInteractions) – Testing data of size proportional
to test_p

Examples

>>> interactions = Interactions(...)
>>> len(interactions)
100000
>>> train, test = random_split(interactions)
>>> len(train), len(test)
(80000, 20000)

2.2 Stratified Split

collie.cross_validation.stratified_split(interactions: BaseInteractions, val_p: float = 0.0, test_p: float
= 0.2, processes: int = -1, seed: Optional[int] = None,
force_split: bool = False)→ Tuple[BaseInteractions, ...]

Split an Interactions instance into train, validate, and test datasets in a stratified manner such that each user
appears at least once in each of the datasets.

22 Chapter 2. Cross Validation

collie, Release 1.3.1

This split guarantees that every user will be represented in the training, validation, and testing datasets
given they appear in interactions at least three times. If val_p == 0, they will appear in the train-
ing and testing datasets given they appear at least two times. If a user appears fewer than this number of
times, a ValueError will be raised. To filter users with fewer than n points out, use collie.utils.
remove_users_with_fewer_than_n_interactions.

This is computationally more complex than random_split, but produces a more representative data split. Note
that when val_p > 0, the algorithm will perform the data split twice, once to create the test set and another to
create the validation set, essentially doubling the computational time.

Note that this function is not supported for HDF5Interactions objects, since this data split implementation
requires all data to fit in memory. A data split for large datasets should be done using a big data processing
technology, like Spark.

Parameters
• interactions (collie.interactions.BaseInteractions) – Interactions in-

stance containing the data to split

• val_p (float) – Proportion of data used for validation

• test_p (float) – Proportion of data used for testing

• processes (int) – Number of CPUs to use for parallelization. If processes == 0, this
will be run sequentially in a single list comprehension, else this function uses joblib.
delayed and joblib.Parallel for parallelization. A value of -1 means that all available
cores will be used

• seed (int) – Random seed for splits

• force_split (bool) – Ignore error raised when a user in the dataset has only a single in-
teraction. Normally, a ValueError is raised when this occurs. When force_split=True,
however, users with a single interaction will be placed in the training set and an error will
NOT be raised

Returns
• train_interactions (collie.interactions.BaseInteractions) – Training data of size propor-

tional to 1 - val_p - test_p

• validate_interactions (collie.interactions.BaseInteractions) – Validation data of size pro-
portional to val_p, returned only if val_p > 0

• test_interactions (collie.interactions.BaseInteractions) – Testing data of size proportional
to test_p

Examples

>>> interactions = Interactions(...)
>>> len(interactions)
100000
>>> train, test = stratified_split(interactions)
>>> len(train), len(test)
(80000, 20000)

2.2. Stratified Split 23

collie, Release 1.3.1

24 Chapter 2. Cross Validation

CHAPTER

THREE

LOSSES

Standard Implicit Loss Functions
A Collie model can’t train without a loss function, and Collie comes out-of-the-box with two different standard loss
function calculations: Bayesian Personalized Ranking (BPR) loss and Hinge loss.
In its simplest form, each loss function accepts as input a prediction score for a positive item (an item a user has inter-
acted with), and a prediction score for a negative item (an item a user has not interacted with). While the mathematical
details differ between each loss, generally, all implicit losses will punish a model for ranking a negative item higher
than a positive item. The severity of this punishment differs across loss functions, as shown in the example below.

import torch

from collie.loss import bpr_loss, hinge_loss

an ideal loss case
positive_score = torch.tensor([3.0])
negative_score = torch.tensor([1.5])

print('BPR Loss: ', bpr_loss(positive_score, negative_score))
print('Hinge Loss:', hinge_loss(positive_score, negative_score))

print('\n-----\n')

a less-than-ideal loss case
positive_score = torch.tensor([1.5])
negative_score = torch.tensor([3.0])

print('BPR Loss: ', bpr_loss(positive_score, negative_score))
print('Hinge Loss:', hinge_loss(positive_score, negative_score))

BPR Loss: tensor(0.2157)
Hinge Loss: tensor(0.)

BPR Loss: tensor(1.4860)
Hinge Loss: tensor(8.7500)

Adaptive Implicit Loss Functions
Some losses extend this idea by being “adaptive,” or accepting multiple negative item prediction scores for each positive

25

collie, Release 1.3.1

score. These losses are typically much more punishing than “non-adaptive” losses, since they allow more opportunities
for the model to incorrectly rank a negative item higher than a positive one. These losses include Adaptive Bayesian
Personalized Ranking loss, Adaptive Hinge loss, and Weighted Approximately Ranked Pairwise (WARP) loss.

import torch

from collie.loss import adaptive_bpr_loss, adaptive_hinge_loss, warp_loss

an ideal loss case
positive_score = torch.tensor([3.0])
many_negative_scores = torch.tensor([[1.5], [0.5], [1.0]])

print('Adaptive BPR Loss: ', adaptive_bpr_loss(positive_score, many_negative_scores))
print('Adaptive Hinge Loss:', adaptive_hinge_loss(positive_score, many_negative_scores))
print('WARP Loss: ', warp_loss(positive_score, many_negative_scores, num_
→˓items=3))

print('\n-----\n')

a less-than-ideal loss case
positive_score = torch.tensor([1.5])
many_negative_scores = torch.tensor([[2.0], [3.0], [2.5]])

print('Adaptive BPR Loss: ', adaptive_bpr_loss(positive_score, many_negative_scores))
print('Adaptive Hinge Loss:', adaptive_hinge_loss(positive_score, many_negative_scores))
print('WARP Loss: ', warp_loss(positive_score, many_negative_scores, num_
→˓items=3))
print('WARP Loss: ', warp_loss(positive_score, many_negative_scores, num_
→˓items=30))

print('\n-----\n')

a case where multiple negative items gives us greater opportunity to correct the model
positive_score = torch.tensor([1.5])
many_negative_scores = torch.tensor([[1.0], [4.0], [1.49]])

print('Adaptive BPR Loss: ', adaptive_bpr_loss(positive_score, many_negative_scores))
print('Adaptive Hinge Loss:', adaptive_hinge_loss(positive_score, many_negative_scores))
print('WARP Loss: ', warp_loss(positive_score, many_negative_scores, num_
→˓items=3))
print('WARP Loss: ', warp_loss(positive_score, many_negative_scores, num_
→˓items=30))

Adaptive BPR Loss: tensor(0.2157)
Adaptive Hinge Loss: tensor(0.)
WARP Loss: tensor(0.)

Adaptive BPR Loss: tensor(1.4860)
Adaptive Hinge Loss: tensor(8.7500)
WARP Loss: tensor(4.3636)

(continues on next page)

26 Chapter 3. Losses

collie, Release 1.3.1

(continued from previous page)

WARP Loss: tensor(31.1301)

Adaptive BPR Loss: tensor(1.7782)
Adaptive Hinge Loss: tensor(15.7500)
WARP Loss: tensor(0.8510)
WARP Loss: tensor(4.5926)

Partial Credit Loss Functions
If you have item metadata available, you might reason that not all losses should be equal. For example, say you are
training a recommendation system on MovieLens data, where users interact with different films, and you are comparing
a positive item, Star Wars, with two negative items: Star Trek and Legally Blonde.

Normally, the loss for Star Wars compared with Star Trek, and Star Wars compared with Legally Blonde would be
equal. But, as humans, we know that Star Trek is closer to Star Wars (both being space western films) than Legally
Blonde is (a romantic comedy that does not have space elements), and would want our loss function to account for
that5.

For these scenarios, all loss functions in Collie support partial credit calculations, meaning we can provide metadata
to reduce the potential loss for certain items with matching metadata. This is best seen through an example below:

import torch

we'll just look at ``bpr_loss`` for this, but note that this works with
all loss functions in Collie
from collie.loss import bpr_loss

positive item is Star Wars
star_wars_score = torch.tensor([1.0])

negative items are Star Trek and Legally Blonde
star_trek_score = torch.tensor([3.0])
legally_blonde_score = torch.tensor([3.0])

print('Star Wars vs Star Trek Loss: ', end='')
print(bpr_loss(positive_scores=star_wars_score, negative_scores=star_trek_score))

print('Star Wars vs Legally Blonde Loss: ', end='')
print(bpr_loss(positive_scores=star_wars_score, negative_scores=legally_blonde_score))

print('\n-----\n')

now let's apply a partial credit calculation to the loss
metadata_weights = {'genre': 0.25}

categorically encode Sci-Fi as ``0`` and Comedy as ``1`` and
order values by Star Wars, Star Trek, Legally Blonde
metadata = {'genre': torch.tensor([0, 0, 1])}

(continues on next page)

5 If it were up to the author of this library, everyone would be recommended Legally Blonde. It is a fantastic film.

27

collie, Release 1.3.1

(continued from previous page)

print('Star Wars vs Star Trek Partial Credit Loss: ', end='')
print(bpr_loss(positive_scores=star_wars_score,

negative_scores=star_trek_score,
positive_items=torch.tensor([0]),
negative_items=torch.tensor([1]),
metadata=metadata,
metadata_weights=metadata_weights))

print('Star Wars vs Legally Blonde Partial Credit Loss: ', end='')
print(bpr_loss(positive_scores=star_wars_score,

negative_scores=legally_blonde_score,
positive_items=torch.tensor([0]),
negative_items=torch.tensor([2]),
metadata=metadata,
metadata_weights=metadata_weights))

Star Wars vs Star Trek Loss: tensor(1.6566)
Star Wars vs Legally Blonde Loss: tensor(1.6566)

Star Wars vs Star Trek Partial Credit Loss: tensor(1.0287)
Star Wars vs Legally Blonde Partial Credit Loss: tensor(1.6566)

See Tutorials for a more in-depth example using partial credit loss functions.

3.1 Standard Losses

3.1.1 BPR Loss

collie.loss.bpr_loss(positive_scores: tensor, negative_scores: tensor, num_items: Optional[Any] = None,
positive_items: Optional[tensor] = None, negative_items: Optional[tensor] = None,
metadata: Optional[Dict[str, tensor]] = {}, metadata_weights: Optional[Dict[str, float]]
= {})→ tensor

Modified Bayesian Personalised Ranking1.

See ideal_difference_from_metadata docstring for more info on how metadata is used.

Modified from torchmf and Spotlight:

• https://github.com/EthanRosenthal/torchmf/blob/master/torchmf.py

• https://github.com/maciejkula/spotlight/blob/master/spotlight/losses.py

Parameters
• positive_scores (torch.tensor, 1-d) – Tensor containing predictions for known pos-

itive items of shape 1 x batch_size

• negative_scores (torch.tensor, 1-d) – Tensor containing scores for a single sampled
negative item of shape 1 x batch_size

1 Hildesheim et al. “BPR: Bayesian Personalized Ranking from Implicit Feedback.” BPR | Proceedings of the Twenty-Fifth Conference on
Uncertainty in Artificial Intelligence, 1 June 2009, dl.acm.org/doi/10.5555/1795114.1795167.

28 Chapter 3. Losses

https://github.com/EthanRosenthal/torchmf/blob/master/torchmf.py
https://github.com/maciejkula/spotlight/blob/master/spotlight/losses.py

collie, Release 1.3.1

• num_items (Any) – Ignored, included only for compatability with WARP loss

• positive_items (torch.tensor, 1-d) – Tensor containing ids for known positive items
of shape 1 x batch_size. This is only needed if metadata is provided

• negative_items (torch.tensor, 1-d) – Tensor containing ids for randomly-sampled
negative items of shape 1 x batch_size. This is only needed if metadata is provided

• metadata (dict) – Keys should be strings identifying each metadata type that match keys in
metadata_weights. Values should be a torch.tensor of shape (num_items x 1). Each
tensor should contain categorical metadata information about items (e.g. a number repre-
senting the genre of the item)

• metadata_weights (dict) – Keys should be strings identifying each metadata type that
match keys in metadata. Values should be the amount of weight to place on a match of
that type of metadata, with the sum of all values <= 1. e.g. If metadata_weights =
{'genre': .3, 'director': .2}, then an item is:

– a 100% match if it’s the same item,

– a 50% match if it’s a different item with the same genre and same director,

– a 30% match if it’s a different item with the same genre and different director,

– a 20% match if it’s a different item with a different genre and same director,

– a 0% match if it’s a different item with a different genre and different director, which is
equivalent to the loss without any partial credit

Returns
loss

Return type
torch.tensor

References

3.1.2 Hinge Loss

collie.loss.hinge_loss(positive_scores: tensor, negative_scores: tensor, num_items: Optional[Any] = None,
positive_items: Optional[tensor] = None, negative_items: Optional[tensor] = None,
metadata: Optional[Dict[str, tensor]] = {}, metadata_weights: Optional[Dict[str,
float]] = {})→ tensor

Modified hinge pairwise loss function2.

See ideal_difference_from_metadata docstring for more info on how metadata is used.

Modified from Spotlight: https://github.com/maciejkula/spotlight/blob/master/spotlight/losses.py

Parameters
• positive_scores (torch.tensor, 1-d) – Tensor containing scores for known positive

items

• negative_scores (torch.tensor, 1-d) – Tensor containing scores for a single sampled
negative item

• num_items (Any) – Ignored, included only for compatability with WARP loss
2 “Hinge Loss.” Wikipedia, Wikimedia Foundation, 5 Mar. 2021, en.wikipedia.org/wiki/ Hinge_loss.

3.1. Standard Losses 29

https://github.com/maciejkula/spotlight/blob/master/spotlight/losses.py

collie, Release 1.3.1

• positive_items (torch.tensor, 1-d) – Tensor containing ids for known positive items
of shape 1 x batch_size. This is only needed if metadata is provided

• negative_items (torch.tensor, 1-d) – Tensor containing ids for randomly-sampled
negative items of shape 1 x batch_size. This is only needed if metadata is provided

• metadata (dict) – Keys should be strings identifying each metadata type that match keys in
metadata_weights. Values should be a torch.tensor of shape (num_items x 1). Each
tensor should contain categorical metadata information about items (e.g. a number repre-
senting the genre of the item)

• metadata_weights (dict) – Keys should be strings identifying each metadata type that
match keys in metadata. Values should be the amount of weight to place on a match of
that type of metadata, with the sum of all values <= 1. e.g. If metadata_weights =
{'genre': .3, 'director': .2}, then an item is:

– a 100% match if it’s the same item,

– a 50% match if it’s a different item with the same genre and same director,

– a 30% match if it’s a different item with the same genre and different director,

– a 20% match if it’s a different item with a different genre and same director,

– a 0% match if it’s a different item with a different genre and different director, which is
equivalent to the loss without any partial credit

Returns
loss

Return type
torch.tensor

References

3.2 Adaptive Losses

3.2.1 Adaptive BPR Loss

collie.loss.adaptive_bpr_loss(positive_scores: tensor, many_negative_scores: tensor, num_items:
Optional[Any] = None, positive_items: Optional[tensor] = None,
negative_items: Optional[tensor] = None, metadata: Optional[Dict[str,
tensor]] = {}, metadata_weights: Optional[Dict[str, float]] = {})→ tensor

Modified adaptive BPR loss function.

Approximates WARP loss by taking the maximum of negative predictions for each user and sending this to BPR
loss.

See ideal_difference_from_metadata docstring for more info on how metadata is used.

Parameters
• positive_scores (torch.tensor, 1-d) – Tensor containing scores for known positive

items of shape num_negative_samples x batch_size

• many_negative_scores (torch.tensor, 2-d) – Iterable of tensors containing scores
for many (n > 1) sampled negative items of shape num_negative_samples x
batch_size. More tensors increase the likelihood of finding ranking-violating pairs, but
risk overfitting

30 Chapter 3. Losses

collie, Release 1.3.1

• num_items (Any) – Ignored, included only for compatability with WARP loss

• positive_items (torch.tensor, 1-d) – Tensor containing ids for known positive items
of shape num_negative_samples x batch_size. This is only needed if metadata is
provided

• negative_items (torch.tensor, 2-d) – Tensor containing ids for sampled negative
items of shape num_negative_samples x batch_size. This is only needed if metadata
is provided

• metadata (dict) – Keys should be strings identifying each metadata type that match keys in
metadata_weights. Values should be a torch.tensor of shape (num_items x 1). Each
tensor should contain categorical metadata information about items (e.g. a number repre-
senting the genre of the item)

• metadata_weights (dict) – Keys should be strings identifying each metadata type that
match keys in metadata. Values should be the amount of weight to place on a match of
that type of metadata, with the sum of all values <= 1. e.g. If metadata_weights =
{'genre': .3, 'director': .2}, then an item is:

– a 100% match if it’s the same item,

– a 50% match if it’s a different item with the same genre and same director,

– a 30% match if it’s a different item with the same genre and different director,

– a 20% match if it’s a different item with a different genre and same director,

– a 0% match if it’s a different item with a different genre and different director, which is
equivalent to the loss without any partial credit

Returns
loss

Return type
torch.tensor

3.2.2 Adaptive Hinge Loss

collie.loss.adaptive_hinge_loss(positive_scores: tensor, many_negative_scores: tensor, num_items:
Optional[Any] = None, positive_items: Optional[tensor] = None,
negative_items: Optional[tensor] = None, metadata: Optional[Dict[str,
tensor]] = {}, metadata_weights: Optional[Dict[str, float]] = {})→ tensor

Modified adaptive hinge pairwise loss function3.

Approximates WARP loss by taking the maximum of negative predictions for each user and sending this to hinge
loss.

See ideal_difference_from_metadata docstring for more info on how metadata is used.

Modified from Spotlight: https://github.com/maciejkula/spotlight/blob/master/spotlight/losses.py

Parameters
• positive_scores (torch.tensor, 1-d) – Tensor containing scores for known positive

items of shape num_negative_samples x batch_size

• many_negative_scores (torch.tensor, 2-d) – Iterable of tensors containing scores
for many (n > 1) sampled negative items of shape num_negative_samples x

3 Kula, Maciej. “Loss Functions.” Loss Functions - Spotlight Documentation, maciejkula.github.io/spotlight/losses.html.

3.2. Adaptive Losses 31

https://github.com/maciejkula/spotlight/blob/master/spotlight/losses.py

collie, Release 1.3.1

batch_size. More tensors increase the likelihood of finding ranking-violating pairs, but
risk overfitting

• num_items (Any) – Ignored, included only for compatability with WARP loss

• positive_items (torch.tensor, 1-d) – Tensor containing ids for known positive items
of shape num_negative_samples x batch_size. This is only needed if metadata is
provided

• negative_items (torch.tensor, 2-d) – Tensor containing ids for sampled negative
items of shape num_negative_samples x batch_size. This is only needed if metadata
is provided

• metadata (dict) – Keys should be strings identifying each metadata type that match keys in
metadata_weights. Values should be a torch.tensor of shape (num_items x 1). Each
tensor should contain categorical metadata information about items (e.g. a number repre-
senting the genre of the item)

• metadata_weights (dict) – Keys should be strings identifying each metadata type that
match keys in metadata. Values should be the amount of weight to place on a match of
that type of metadata, with the sum of all values <= 1. e.g. If metadata_weights =
{'genre': .3, 'director': .2}, then an item is:

– a 100% match if it’s the same item,

– a 50% match if it’s a different item with the same genre and same director,

– a 30% match if it’s a different item with the same genre and different director,

– a 20% match if it’s a different item with a different genre and same director,

– a 0% match if it’s a different item with a different genre and different director, which is
equivalent to the loss without any partial credit

Returns
loss

Return type
torch.tensor

References

3.2.3 WARP Loss

collie.loss.warp_loss(positive_scores: tensor, many_negative_scores: tensor, num_items: int, positive_items:
Optional[tensor] = None, negative_items: Optional[tensor] = None, metadata:
Optional[Dict[str, tensor]] = {}, metadata_weights: Optional[Dict[str, float]] = {})→
tensor

Modified WARP loss function4.

See http://www.thespermwhale.com/jaseweston/papers/wsabie-ijcai.pdf for loss equation.

See ideal_difference_from_metadata docstring for more info on how metadata is used.

Parameters
• positive_scores (torch.tensor, 1-d) – Tensor containing scores for known positive

items of shape num_negative_samples x batch_size

4 Weston et al. WSABIE: Scaling Up To Large Vocabulary Image Annotation. www.thespermwhale.com/jaseweston/papers/wsabie-ijcai.pdf.

32 Chapter 3. Losses

http://www.thespermwhale.com/jaseweston/papers/wsabie-ijcai.pdf

collie, Release 1.3.1

• many_negative_scores (torch.tensor, 2-d) – Iterable of tensors containing scores
for many (n > 1) sampled negative items of shape num_negative_samples x
batch_size. More tensors increase the likelihood of finding ranking-violating pairs, but
risk overfitting

• num_items (int) – Total number of items in the dataset

• positive_items (torch.tensor, 1-d) – Tensor containing ids for known positive items
of shape num_negative_samples x batch_size. This is only needed if metadata is
provided

• negative_items (torch.tensor, 2-d) – Tensor containing ids for sampled negative
items of shape num_negative_samples x batch_size. This is only needed if metadata
is provided

• metadata (dict) – Keys should be strings identifying each metadata type that match keys in
metadata_weights. Values should be a torch.tensor of shape (num_items x 1). Each
tensor should contain categorical metadata information about items (e.g. a number repre-
senting the genre of the item)

• metadata_weights (dict) – Keys should be strings identifying each metadata type that
match keys in metadata. Values should be the amount of weight to place on a match of
that type of metadata, with the sum of all values <= 1. e.g. If metadata_weights =
{'genre': .3, 'director': .2}, then an item is:

– a 100% match if it’s the same item,

– a 50% match if it’s a different item with the same genre and same director,

– a 30% match if it’s a different item with the same genre and different director,

– a 20% match if it’s a different item with a different genre and same director,

– a 0% match if it’s a different item with a different genre and different director, which is
equivalent to the loss without any partial credit

Returns
loss

Return type
torch.tensor

References

3.2. Adaptive Losses 33

collie, Release 1.3.1

34 Chapter 3. Losses

CHAPTER

FOUR

MODELS

Instantiating and Training a Collie Model
Collie provides architectures for several state-of-the-art recommendation model architectures for both non-hybrid and
hybrid models, depending on if you would like to directly incorporate metadata into the model.

Since Collie utilizes PyTorch Lightning for model training, all models, by default:

• Are compatible with CPU, GPU, multi-GPU, and TPU training

• Allow for 16-bit precision

• Integrate with common external loggers

• Allow for extensive predefined and custom training callbacks

• Are flexible with minimal boilerplate code

While each model’s API differs slightly, generally, the training procedure for each model will look like:

from collie.model import CollieTrainer, MatrixFactorizationModel

assume you have ``interactions`` already defined and ready-to-go

model = MatrixFactorizationModel(interactions)

trainer = CollieTrainer(model)
trainer.fit(model)
model.eval()

now, ``model`` is ready to be used for inference, evaluation, etc.

model.save_model('model.pkl')

When we have side-data about items, this can be incorporated directly into the loss function of the model. For details
on this, see Losses.

Hybrid Collie models allow incorporating side-data about items and/or users directly into the model. For an in-depth
example of this, see Tutorials.

Creating a Custom Architecture
Collie not only houses incredible pre-defined architectures, but was built with customization in mind. All Collie recom-
mendation models are built as subclasses of the BasePipeline model, inheriting common loss calculation functions
and model training boilerplate. This allows for a nice balance between both flexibility and faster iteration.

35

collie, Release 1.3.1

While any method can be overridden with more architecture-specific implementations, at the bare minimum, each
additional model must override:

• _setup_model - Model architecture initialization

• forward - Model step that accepts a batch of data of form (users, items), negative_items and outputs
a recommendation score for each item

If we wanted to create a custom model that performed a barebones matrix factorization calculation, in Collie, this would
be implemented as:

import torch

from collie.model import BasePipeline, CollieTrainer, ScaledEmbedding
from collie.utils import get_init_arguments

class SimpleModel(BasePipeline):
def __init__(self, train, val, embedding_dim):

"""
Initialize a simple model that is a subclass of ``BasePipeline``.

Parameters

train: ``collie.interactions`` object
val: ``collie.interactions`` object
embedding_dim: int

Number of latent factors to use for user and item embeddings

"""
super().__init__(**get_init_arguments())

def _setup_model(self, **kwargs):
"""Method for building model internals that rely on the data passed in."""
self.user_embeddings = ScaledEmbedding(num_embeddings=self.hparams.num_users,

embedding_dim=self.hparams.embedding_dim)
self.item_embeddings = ScaledEmbedding(num_embeddings=self.hparams.num_items,

embedding_dim=self.hparams.embedding_dim)

def forward(self, users, items):
"""
Forward pass through the model.

Parameters

users: tensor, 1-d

Array of user indices
items: tensor, 1-d

Array of item indices

Returns

preds: tensor, 1-d

Predicted scores

(continues on next page)

36 Chapter 4. Models

collie, Release 1.3.1

(continued from previous page)

"""
return torch.mul(

self.user_embeddings(users), self.item_embeddings(items)
).sum(axis=1)

assume you have ``train`` and ``val`` already defined and ready-to-go

model = SimpleModel(train, val, embedding_dim=10)

trainer = CollieTrainer(model, max_epochs=10)
trainer.fit(model)
model.eval()

now, ``model`` is ready to be used for inference, evaluation, etc.

model.save_model('model.pkl')

See the source code for the BasePipeline in Model Templates below for the calling order of each class method as
well as initialization details for optimizers, schedulers, and more.

4.1 Standard Models

4.1.1 Matrix Factorization Model

4.1. Standard Models 37

collie, Release 1.3.1

class collie.model.MatrixFactorizationModel(train: ~typ-
ing.Optional[~typing.Union[~collie.interactions.dataloaders.ApproximateNegativeSamplingInteractionsDataLoader,
~collie.interactions.datasets.Interactions,
~collie.interactions.dataloaders.InteractionsDataLoader]]
= None, val: ~typ-
ing.Optional[~typing.Union[~collie.interactions.dataloaders.ApproximateNegativeSamplingInteractionsDataLoader,
~collie.interactions.datasets.Interactions,
~collie.interactions.dataloaders.InteractionsDataLoader]]
= None, embedding_dim: int = 30, dropout_p: float = 0.0,
sparse: bool = False, lr: float = 0.001, bias_lr:
~typing.Optional[~typing.Union[float, str]] = 0.01,
lr_scheduler_func:
~typing.Optional[~torch.optim.lr_scheduler._LRScheduler]
= functools.partial(<class
'torch.optim.lr_scheduler.ReduceLROnPlateau'>,
patience=1, verbose=True), weight_decay: float = 0.0,
optimizer: ~typing.Union[str,
~torch.optim.optimizer.Optimizer] = 'adam',
bias_optimizer: ~typing.Optional[~typing.Union[str,
~torch.optim.optimizer.Optimizer]] = 'sgd', loss:
~typing.Union[str, ~typing.Callable[[...],
~torch._VariableFunctionsClass.tensor]] = 'hinge',
metadata_for_loss: ~typing.Optional[~typing.Dict[str,
~torch._VariableFunctionsClass.tensor]] = None,
metadata_for_loss_weights:
~typing.Optional[~typing.Dict[str, float]] = None,
y_range: ~typing.Optional[~typing.Tuple[float, float]] =
None, load_model_path: ~typing.Optional[str] = None,
map_location: ~typing.Optional[str] = None)

Bases: BasePipeline

Training pipeline for the matrix factorization model.

MatrixFactorizationModel models have an embedding layer for both users and items which are dot-
producted together to output a single float ranking value.

Collie adds a twist on to this incredibly popular framework by allowing separate optimizers for embeddings and
bias terms. With larger datasets and multiple epochs of training, a model might incorrectly learn to only optimize
the bias terms for a quicker path towards a local loss minimum, essentially memorizing how popular each item
is. By using a separate, slower optimizer for the bias terms (like Stochastic Gradient Descent), the model must
prioritize optimizing the embeddings for meaningful, more varied recommendations, leading to a model that
is able to achieve a much lower loss. See the documentation below for bias_lr and bias_optimizer input
arguments for implementation details.

All MatrixFactorizationModel instances are subclasses of the LightningModule class provided by PyTorch
Lightning. This means to train a model, you will need a collie.model.CollieTrainer object, but the model
can be saved and loaded without this Trainer instance. Example usage may look like:

from collie.model import CollieTrainer, MatrixFactorizationModel

model = MatrixFactorizationModel(train=train)
trainer = CollieTrainer(model)
trainer.fit(model)
model.eval()

(continues on next page)

38 Chapter 4. Models

collie, Release 1.3.1

(continued from previous page)

do evaluation as normal with ``model``

model.save_model(filename='model.pth')
new_model = MatrixFactorizationModel(load_model_path='model.pth')

do evaluation as normal with ``new_model``

Parameters
• train (collie.interactions object) – Data loader for training data. If an
Interactions object is supplied, an InteractionsDataLoader will automatically be
instantiated with shuffle=True

• val (collie.interactions object) – Data loader for validation data. If an Interactions
object is supplied, an InteractionsDataLoader will automatically be instantiated with
shuffle=False

• embedding_dim (int) – Number of latent factors to use for user and item embeddings

• dropout_p (float) – Probability of dropout

• sparse (bool) – Whether or not to treat embeddings as sparse tensors. If True, cannot use
weight decay on the optimizer

• lr (float) – Model learning rate

• bias_lr (float) – Bias terms learning rate. If ‘infer’, will set equal to lr

• lr_scheduler_func (torch.optim.lr_scheduler) – Learning rate scheduler to use
during fitting

• weight_decay (float) – Weight decay passed to the optimizer, if optimizer permits

• optimizer (torch.optim or str) – If a string, one of the following supported optimiz-
ers:

– 'sgd' (for torch.optim.SGD)

– 'adagrad' (for torch.optim.Adagrad)

– 'adam' (for torch.optim.Adam)

– 'sparse_adam' (for torch.optim.SparseAdam)

• bias_optimizer (torch.optim or str) – Optimizer for the bias terms. This supports
the same string options as optimizer, with the addition of infer, which will set the op-
timizer equal to optimizer. If bias_optimizer is None, only a single optimizer will be
created for all model parameters

• loss (function or str) – If a string, one of the following implemented losses:

– 'bpr' / 'adaptive_bpr' (implicit data)

– 'hinge' / 'adaptive_hinge' (implicit data)

– 'warp' (implicit data)

– 'mse' (explicit data)

– 'mae' (explicit data)

4.1. Standard Models 39

collie, Release 1.3.1

For implicit data, if train.num_negative_samples > 1, the adaptive loss version will
automatically be used of the losses above (except for WARP loss, which is only adaptive by
nature).

If a callable is passed, that function will be used for calculating the loss. For implicit mod-
els, the first two arguments passed will be the positive and negative predictions, respec-
tively. Additional keyword arguments passed in order are num_items, positive_items,
negative_items, metadata, and metadata_weights. For explicit models, the only two
arguments passed in will be the prediction and actual rating values, in order.

• metadata_for_loss (dict) – Keys should be strings identifying each metadata type
that match keys in metadata_weights. Values should be a torch.tensor of shape
(num_items x 1). Each tensor should contain categorical metadata information about items
(e.g. a number representing the genre of the item)

• metadata_for_loss_weights (dict) – Keys should be strings identifying each meta-
data type that match keys in metadata. Values should be the amount of weight to
place on a match of that type of metadata, with the sum of all values <= 1. e.g. If
metadata_for_loss_weights = {'genre': .3, 'director': .2}, then an item
is:

– a 100% match if it’s the same item,

– a 50% match if it’s a different item with the same genre and same director,

– a 30% match if it’s a different item with the same genre and different director,

– a 20% match if it’s a different item with a different genre and same director,

– a 0% match if it’s a different item with a different genre and different director, which is
equivalent to the loss without any partial credit

• y_range (tuple) – Specify as (min, max) to apply a sigmoid layer to the output score of
the model to get predicted ratings within the range of min and max

• load_model_path (str or Path) – To load a previously-saved model for inference, pass
in path to output of model.save_model() method. Note that datasets and optimizers will
NOT be restored. If None, will initialize model as normal

• map_location (str or torch.device) – If load_model_path is provided, device
specifying how to remap storage locations when torch.load-ing the state dictionary

forward(users: tensor, items: tensor)→ tensor
Forward pass through the model.

Simple matrix factorization for a single user and item looks like:

``prediction = (user_embedding * item_embedding) + user_bias + item_bias``

If dropout is added, it is applied to the two embeddings and not the biases.

Parameters
• users (tensor, 1-d) – Array of user indices

• items (tensor, 1-d) – Array of item indices

Returns
preds – Predicted ratings or rankings

Return type
tensor, 1-d

40 Chapter 4. Models

collie, Release 1.3.1

4.1.2 Multilayer Perceptron Matrix Factorization Model

class collie.model.MLPMatrixFactorizationModel(train: ~typ-
ing.Optional[~typing.Union[~collie.interactions.dataloaders.ApproximateNegativeSamplingInteractionsDataLoader,
~collie.interactions.datasets.Interactions, ~col-
lie.interactions.dataloaders.InteractionsDataLoader]]
= None, val: ~typ-
ing.Optional[~typing.Union[~collie.interactions.dataloaders.ApproximateNegativeSamplingInteractionsDataLoader,
~collie.interactions.datasets.Interactions, ~col-
lie.interactions.dataloaders.InteractionsDataLoader]]
= None, embedding_dim: int = 30, num_layers: int =
3, dropout_p: float = 0.0, lr: float = 0.001, bias_lr:
~typing.Optional[~typing.Union[float, str]] = 0.01,
lr_scheduler_func: ~typ-
ing.Optional[~torch.optim.lr_scheduler._LRScheduler]
= functools.partial(<class
'torch.optim.lr_scheduler.ReduceLROnPlateau'>,
patience=1, verbose=True), weight_decay: float = 0.0,
optimizer: ~typing.Union[str,
~torch.optim.optimizer.Optimizer] = 'adam',
bias_optimizer: ~typing.Optional[~typing.Union[str,
~torch.optim.optimizer.Optimizer]] = 'sgd', loss:
~typing.Union[str, ~typing.Callable[[...],
~torch._VariableFunctionsClass.tensor]] = 'hinge',
metadata_for_loss: ~typing.Optional[~typing.Dict[str,
~torch._VariableFunctionsClass.tensor]] = None,
metadata_for_loss_weights:
~typing.Optional[~typing.Dict[str, float]] = None,
y_range: ~typing.Optional[~typing.Tuple[float, float]]
= None, load_model_path: ~typing.Optional[str] =
None, map_location: ~typing.Optional[str] = None)

Bases: BasePipeline

Training pipeline for the matrix factorization model with MLP layers instead of a final dot

product (like in MatrixFactorizationModel).

MLPMatrixFactorizationModel models have an embedding layer for both users and items which, are con-
catenated and sent through a MLP to output a single float ranking value.

All MLPMatrixFactorizationModel instances are subclasses of the LightningModule class provided by
PyTorch Lightning. This means to train a model, you will need a collie.model.CollieTrainer object, but
the model can be saved and loaded without this Trainer instance. Example usage may look like:

from collie.model import CollieTrainer, MLPMatrixFactorizationModel

model = MLPMatrixFactorizationModel(train=train)
trainer = CollieTrainer(model)
trainer.fit(model)
model.eval()

do evaluation as normal with ``model``

model.save_model(filename='model.pth')
new_model = MLPMatrixFactorizationModel(load_model_path='model.pth')

(continues on next page)

4.1. Standard Models 41

collie, Release 1.3.1

(continued from previous page)

do evaluation as normal with ``new_model``

Parameters
• train (collie.interactions object) – Data loader for training data. If an
Interactions object is supplied, an InteractionsDataLoader will automatically be
instantiated with shuffle=True

• val (collie.interactions object) – Data loader for validation data. If an Interactions
object is supplied, an InteractionsDataLoader will automatically be instantiated with
shuffle=False

• embedding_dim (int) – Number of latent factors to use for user and item embeddings

• num_layers (int) – Number of MLP layers to apply. Each MLP layer will have its in-
put dimension calculated with the formula embedding_dim * (2 ** (``num_layers -
current_layer_number))``

• dropout_p (float) – Probability of dropout on the linear layers

• lr (float) – Model learning rate

• bias_lr (float) – Bias terms learning rate. If ‘infer’, will set equal to lr

• lr_scheduler_func (torch.optim.lr_scheduler) – Learning rate scheduler to use
during fitting

• weight_decay (float) – Weight decay passed to the optimizer, if optimizer permits

• optimizer (torch.optim or str) – If a string, one of the following supported optimiz-
ers:

– 'sgd' (for torch.optim.SGD)

– 'adam' (for torch.optim.Adam)

• bias_optimizer (torch.optim or str) – Optimizer for the bias terms. This supports
the same string options as optimizer, with the addition of infer, which will set the op-
timizer equal to optimizer. If bias_optimizer is None, only a single optimizer will be
created for all model parameters

• loss (function or str) – If a string, one of the following implemented losses:

– 'bpr' / 'adaptive_bpr' (implicit data)

– 'hinge' / 'adaptive_hinge' (implicit data)

– 'warp' (implicit data)

– 'mse' (explicit data)

– 'mae' (explicit data)

For implicit data, if train.num_negative_samples > 1, the adaptive loss version will
automatically be used of the losses above (except for WARP loss, which is only adaptive by
nature).

If a callable is passed, that function will be used for calculating the loss. For implicit mod-
els, the first two arguments passed will be the positive and negative predictions, respec-
tively. Additional keyword arguments passed in order are num_items, positive_items,
negative_items, metadata, and metadata_weights. For explicit models, the only two
arguments passed in will be the prediction and actual rating values, in order.

42 Chapter 4. Models

collie, Release 1.3.1

• metadata_for_loss (dict) – Keys should be strings identifying each metadata type
that match keys in metadata_weights. Values should be a torch.tensor of shape
(num_items x 1). Each tensor should contain categorical metadata information about items
(e.g. a number representing the genre of the item)

• metadata_for_loss_weights (dict) – Keys should be strings identifying each meta-
data type that match keys in metadata. Values should be the amount of weight to
place on a match of that type of metadata, with the sum of all values <= 1. e.g. If
metadata_for_loss_weights = {'genre': .3, 'director': .2}, then an item
is:

– a 100% match if it’s the same item,

– a 50% match if it’s a different item with the same genre and same director,

– a 30% match if it’s a different item with the same genre and different director,

– a 20% match if it’s a different item with a different genre and same director,

– a 0% match if it’s a different item with a different genre and different director, which is
equivalent to the loss without any partial credit

• y_range (tuple) – Specify as (min, max) to apply a sigmoid layer to the output score of
the model to get predicted ratings within the range of min and max

• load_model_path (str or Path) – To load a previously-saved model for inference, pass
in path to output of model.save_model() method. Note that datasets and optimizers will
NOT be restored. If None, will initialize model as normal

• map_location (str or torch.device) – If load_model_path is provided, device
specifying how to remap storage locations when torch.load-ing the state dictionary

forward(users: tensor, items: tensor)→ tensor
Forward pass through the model, roughly:

`prediction = MLP(concatenate(user_embedding * item_embedding)) + user_bias +
item_bias`

If dropout is added, it is applied for the two embeddings and not the biases.

Parameters
• users (tensor, 1-d) – Array of user indices

• items (tensor, 1-d) – Array of item indices

Returns
preds – Predicted ratings or rankings

Return type
tensor, 1-d

4.1. Standard Models 43

collie, Release 1.3.1

4.1.3 Nonlinear Embeddings Matrix Factorization Model

class collie.model.NonlinearMatrixFactorizationModel(train: ~typ-
ing.Optional[~typing.Union[~collie.interactions.dataloaders.ApproximateNegativeSamplingInteractionsDataLoader,
~collie.interactions.datasets.Interactions, ~col-
lie.interactions.dataloaders.InteractionsDataLoader]]
= None, val: ~typ-
ing.Optional[~typing.Union[~collie.interactions.dataloaders.ApproximateNegativeSamplingInteractionsDataLoader,
~collie.interactions.datasets.Interactions, ~col-
lie.interactions.dataloaders.InteractionsDataLoader]]
= None, user_embedding_dim: int = 60,
item_embedding_dim: int = 60,
user_dense_layers_dims: ~typing.List[float] =
[48, 32], item_dense_layers_dims:
~typing.List[float] = [48, 32],
embedding_dropout_p: float = 0.0,
dense_dropout_p: float = 0.0, lr: float = 0.001,
bias_lr: ~typing.Optional[~typing.Union[float,
str]] = 0.01, lr_scheduler_func: ~typ-
ing.Optional[~torch.optim.lr_scheduler._LRScheduler]
= functools.partial(<class
'torch.optim.lr_scheduler.ReduceLROnPlateau'>,
patience=1, verbose=True), weight_decay:
float = 0.0, optimizer: ~typing.Union[str,
~torch.optim.optimizer.Optimizer] = 'adam',
bias_optimizer:
~typing.Optional[~typing.Union[str,
~torch.optim.optimizer.Optimizer]] = 'sgd',
loss: ~typing.Union[str, ~typing.Callable[[...],
~torch._VariableFunctionsClass.tensor]] =
'hinge', metadata_for_loss:
~typing.Optional[~typing.Dict[str,
~torch._VariableFunctionsClass.tensor]] =
None, metadata_for_loss_weights:
~typing.Optional[~typing.Dict[str, float]] =
None, y_range:
~typing.Optional[~typing.Tuple[float, float]] =
None, load_model_path: ~typing.Optional[str]
= None, map_location: ~typing.Optional[str]
= None)

Bases: BasePipeline

Training pipeline for a nonlinear matrix factorization model.

NonlinearMatrixFactorizationModel models have an embedding layer for users and items. These are sent
through separate dense networks, which output more refined embeddings, which are then dot producted for a
single float ranking / rating.

Collie adds a twist on to this novel framework by allowing separate optimizers for embeddings and bias terms.
With larger datasets and multiple epochs of training, a model might incorrectly learn to only optimize the bias
terms for a quicker path towards a local loss minimum, essentially memorizing how popular each item is. By
using a separate, slower optimizer for the bias terms (like Stochastic Gradient Descent), the model must prioritize
optimizing the embeddings for meaningful, more varied recommendations, leading to a model that is able to
achieve a much lower loss. See the documentation below for bias_lr and bias_optimizer input arguments
for implementation details.

44 Chapter 4. Models

collie, Release 1.3.1

All NonlinearMatrixFactorizationModel instances are subclasses of the LightningModule class pro-
vided by PyTorch Lightning. This means to train a model, you will need a collie.model.CollieTrainer
object, but the model can be saved and loaded without this Trainer instance. Example usage may look like:

from collie.model import CollieTrainer, NonlinearMatrixFactorizationModel

model = NonlinearMatrixFactorizationModel(train=train)
trainer = CollieTrainer(model)
trainer.fit(model)
model.eval()

do evaluation as normal with ``model``

model.save_model(filename='model.pth')
new_model = NonlinearMatrixFactorizationModel(load_model_path='model.pth')

do evaluation as normal with ``new_model``

Parameters
• train (collie.interactions object) – Data loader for training data. If an
Interactions object is supplied, an InteractionsDataLoader will automatically be
instantiated with shuffle=True

• val (collie.interactions object) – Data loader for validation data. If an Interactions
object is supplied, an InteractionsDataLoader will automatically be instantiated with
shuffle=False

• user_embedding_dim (int) – Number of latent factors to use for user embeddings

• item_embedding_dim (int) – Number of latent factors to use for item embeddings

• user_dense_layers_dims (list) – List of linear layer dimensions to apply to the user
embedding, starting with the dimension directly following user_embedding_dim

• item_dense_layers_dims (list) – List of linear layer dimensions to apply to the item
embedding, starting with the dimension directly following item_embedding_dim

• embedding_dropout_p (float) – Probability of dropout on the embedding layers

• dense_dropout_p (float) – Probability of dropout on the dense layers

• lr (float) – Model learning rate

• bias_lr (float) – Bias terms learning rate. If ‘infer’, will set equal to lr

• lr_scheduler_func (torch.optim.lr_scheduler) – Learning rate scheduler to use
during fitting

• weight_decay (float) – Weight decay passed to the optimizer, if optimizer permits

• optimizer (torch.optim or str) – If a string, one of the following supported optimiz-
ers:

– 'sgd' (for torch.optim.SGD)

– 'adam' (for torch.optim.Adam)

• bias_optimizer (torch.optim or str) – Optimizer for the bias terms. This supports
the same string options as optimizer, with the addition of infer, which will set the op-
timizer equal to optimizer. If bias_optimizer is None, only a single optimizer will be
created for all model parameters

4.1. Standard Models 45

collie, Release 1.3.1

• loss (function or str) – If a string, one of the following implemented losses:

– 'bpr' / 'adaptive_bpr' (implicit data)

– 'hinge' / 'adaptive_hinge' (implicit data)

– 'warp' (implicit data)

– 'mse' (explicit data)

– 'mae' (explicit data)

For implicit data, if train.num_negative_samples > 1, the adaptive loss version will
automatically be used of the losses above (except for WARP loss, which is only adaptive by
nature).

If a callable is passed, that function will be used for calculating the loss. For implicit mod-
els, the first two arguments passed will be the positive and negative predictions, respec-
tively. Additional keyword arguments passed in order are num_items, positive_items,
negative_items, metadata, and metadata_weights. For explicit models, the only two
arguments passed in will be the prediction and actual rating values, in order.

• metadata_for_loss (dict) – Keys should be strings identifying each metadata type
that match keys in metadata_weights. Values should be a torch.tensor of shape
(num_items x 1). Each tensor should contain categorical metadata information about items
(e.g. a number representing the genre of the item)

• metadata_for_loss_weights (dict) – Keys should be strings identifying each meta-
data type that match keys in metadata. Values should be the amount of weight to
place on a match of that type of metadata, with the sum of all values <= 1. e.g. If
metadata_for_loss_weights = {'genre': .3, 'director': .2}, then an item
is:

– a 100% match if it’s the same item,

– a 50% match if it’s a different item with the same genre and same director,

– a 30% match if it’s a different item with the same genre and different director,

– a 20% match if it’s a different item with a different genre and same director,

– a 0% match if it’s a different item with a different genre and different director, which is
equivalent to the loss without any partial credit

• y_range (tuple) – Specify as (min, max) to apply a sigmoid layer to the output score of
the model to get predicted ratings within the range of min and max

• load_model_path (str or Path) – To load a previously-saved model for inference, pass
in path to output of model.save_model() method. Note that datasets and optimizers will
NOT be restored. If None, will initialize model as normal

• map_location (str or torch.device) – If load_model_path is provided, device
specifying how to remap storage locations when torch.load-ing the state dictionary

forward(users: tensor, items: tensor)→ tensor
Forward pass through the model.

Parameters
• users (tensor, 1-d) – Array of user indices

• items (tensor, 1-d) – Array of item indices

46 Chapter 4. Models

collie, Release 1.3.1

Returns
preds – Predicted ratings or rankings

Return type
tensor, 1-d

4.1.4 Collaborative Metric Learning Model

class collie.model.CollaborativeMetricLearningModel(train: ~typ-
ing.Optional[~typing.Union[~collie.interactions.dataloaders.ApproximateNegativeSamplingInteractionsDataLoader,
~collie.interactions.datasets.Interactions, ~col-
lie.interactions.dataloaders.InteractionsDataLoader]]
= None, val: ~typ-
ing.Optional[~typing.Union[~collie.interactions.dataloaders.ApproximateNegativeSamplingInteractionsDataLoader,
~collie.interactions.datasets.Interactions, ~col-
lie.interactions.dataloaders.InteractionsDataLoader]]
= None, embedding_dim: int = 30, sparse: bool
= False, lr: float = 0.001, lr_scheduler_func:
~typ-
ing.Optional[~torch.optim.lr_scheduler._LRScheduler]
= functools.partial(<class
'torch.optim.lr_scheduler.ReduceLROnPlateau'>,
patience=1, verbose=True), weight_decay: float
= 0.0, optimizer: ~typing.Union[str,
~torch.optim.optimizer.Optimizer] = 'adam',
loss: ~typing.Union[str, ~typing.Callable[[...],
~torch._VariableFunctionsClass.tensor]] =
'hinge', metadata_for_loss:
~typing.Optional[~typing.Dict[str,
~torch._VariableFunctionsClass.tensor]] =
None, metadata_for_loss_weights:
~typing.Optional[~typing.Dict[str, float]] =
None, y_range:
~typing.Optional[~typing.Tuple[float, float]] =
None, load_model_path: ~typing.Optional[str]
= None, map_location: ~typing.Optional[str] =
None)

Bases: BasePipeline

Training pipeline for the collaborative metric learning model.

CollaborativeMetricLearningModel models have an embedding layer for both users and items. A single
float, prediction is retrieved by taking the pairwise distance between the two embeddings.

The implementation here is meant to mimic its original implementation as specified here: https://arxiv.org/pdf/
1803.00202.pdf1

All CollaborativeMetricLearningModel instances are subclasses of the LightningModule class provided
by PyTorch Lightning. This means to train a model, you will need a collie.model.CollieTrainer object,
but the model can be saved and loaded without this Trainer instance. Example usage may look like:

1 Campo, Miguel, et al. “Collaborative Metric Learning Recommendation System: Application to Theatrical Movie Releases.” ArXiv.org, 1
Mar. 2018, arxiv.org/abs/1803.00202.

4.1. Standard Models 47

https://arxiv.org/pdf/1803.00202.pdf
https://arxiv.org/pdf/1803.00202.pdf

collie, Release 1.3.1

from collie.model import CollaborativeMetricLearningModel, CollieTrainer

model = CollaborativeMetricLearningModel(train=train)
trainer = CollieTrainer(model)
trainer.fit(model)
model.eval()

do evaluation as normal with ``model``

model.save_model(filename='model.pth')
new_model = CollaborativeMetricLearningModel(load_model_path='model.pth')

do evaluation as normal with ``new_model``

Parameters
• train (collie.interactions object) – Data loader for training data. If an
Interactions object is supplied, an InteractionsDataLoader will automatically be
instantiated with shuffle=True

• val (collie.interactions object) – Data loader for validation data. If an Interactions
object is supplied, an InteractionsDataLoader will automatically be instantiated with
shuffle=False

• embedding_dim (int) – Number of latent factors to use for user and item embeddings

• sparse (bool) – Whether or not to treat embeddings as sparse tensors. If True, cannot use
weight decay on the optimizer

• lr (float) – Model learning rate

• lr_scheduler_func (torch.optim.lr_scheduler) – Learning rate scheduler to use
during fitting

• weight_decay (float) – Weight decay passed to the optimizer, if optimizer permits

• optimizer (torch.optim or str) – If a string, one of the following supported optimiz-
ers:

– 'sgd' (for torch.optim.SGD)

– 'adagrad' (for torch.optim.Adagrad)

– 'adam' (for torch.optim.Adam)

– 'sparse_adam' (for torch.optim.SparseAdam)

• loss (function or str) – If a string, one of the following implemented losses:

– 'bpr' / 'adaptive_bpr' (implicit data)

– 'hinge' / 'adaptive_hinge' (implicit data)

– 'warp' (implicit data)

– 'mse' (explicit data)

– 'mae' (explicit data)

For implicit data, if train.num_negative_samples > 1, the adaptive loss version will
automatically be used of the losses above (except for WARP loss, which is only adaptive by
nature).

48 Chapter 4. Models

collie, Release 1.3.1

If a callable is passed, that function will be used for calculating the loss. For implicit mod-
els, the first two arguments passed will be the positive and negative predictions, respec-
tively. Additional keyword arguments passed in order are num_items, positive_items,
negative_items, metadata, and metadata_weights. For explicit models, the only two
arguments passed in will be the prediction and actual rating values, in order.

• metadata_for_loss (dict) – Keys should be strings identifying each metadata type
that match keys in metadata_weights. Values should be a torch.tensor of shape
(num_items x 1). Each tensor should contain categorical metadata information about items
(e.g. a number representing the genre of the item)

• metadata_for_loss_weights (dict) – Keys should be strings identifying each meta-
data type that match keys in metadata. Values should be the amount of weight to
place on a match of that type of metadata, with the sum of all values <= 1. e.g. If
metadata_for_loss_weights = {'genre': .3, 'director': .2}, then an item
is:

– a 100% match if it’s the same item,

– a 50% match if it’s a different item with the same genre and same director,

– a 30% match if it’s a different item with the same genre and different director,

– a 20% match if it’s a different item with a different genre and same director,

– a 0% match if it’s a different item with a different genre and different director, which is
equivalent to the loss without any partial credit

• y_range (tuple) – Specify as (min, max) to apply a sigmoid layer to the output score of
the model to get predicted ratings within the range of min and max

• load_model_path (str or Path) – To load a previously-saved model for inference, pass
in path to output of model.save_model() method. Note that datasets and optimizers will
NOT be restored. If None, will initialize model as normal

• map_location (str or torch.device) – If load_model_path is provided, device
specifying how to remap storage locations when torch.load-ing the state dictionary

References

forward(users: tensor, items: tensor)→ tensor
Forward pass through the model, equivalent to:

`prediction = pairwise_distance(user_embedding * item_embedding)`

Parameters
• users (tensor, 1-d) – Array of user indices

• items (tensor, 1-d) – Array of item indices

Returns
preds – Predicted ratings or rankings

Return type
tensor, 1-d

4.1. Standard Models 49

collie, Release 1.3.1

4.1.5 Neural Collaborative Filtering (NeuCF)

class collie.model.NeuralCollaborativeFiltering(train: ~typ-
ing.Optional[~typing.Union[~collie.interactions.dataloaders.ApproximateNegativeSamplingInteractionsDataLoader,
~collie.interactions.datasets.Interactions, ~col-
lie.interactions.dataloaders.InteractionsDataLoader]]
= None, val: ~typ-
ing.Optional[~typing.Union[~collie.interactions.dataloaders.ApproximateNegativeSamplingInteractionsDataLoader,
~collie.interactions.datasets.Interactions, ~col-
lie.interactions.dataloaders.InteractionsDataLoader]]
= None, embedding_dim: int = 8, num_layers: int =
3, final_layer: ~typing.Optional[~typing.Union[str,
~typ-
ing.Callable[[~torch._VariableFunctionsClass.tensor],
~torch._VariableFunctionsClass.tensor]]] = None,
dropout_p: float = 0.0, lr: float = 0.001,
lr_scheduler_func: ~typ-
ing.Optional[~torch.optim.lr_scheduler._LRScheduler]
= functools.partial(<class
'torch.optim.lr_scheduler.ReduceLROnPlateau'>,
patience=1, verbose=True), weight_decay: float =
0.0, optimizer: ~typing.Union[str,
~torch.optim.optimizer.Optimizer] = 'adam', loss:
~typing.Union[str, ~typing.Callable[[...],
~torch._VariableFunctionsClass.tensor]] = 'hinge',
metadata_for_loss:
~typing.Optional[~typing.Dict[str,
~torch._VariableFunctionsClass.tensor]] = None,
metadata_for_loss_weights:
~typing.Optional[~typing.Dict[str, float]] = None,
load_model_path: ~typing.Optional[str] = None,
map_location: ~typing.Optional[str] = None)

Bases: BasePipeline

Training pipeline for a neural matrix factorization model.

NeuralCollaborativeFilteringmodels combine a collaborative filtering and multilayer perceptron network
in a single, unified model. The model consists of two sections: the first is a simple matrix factorization that calcu-
lates a score by multiplying together user and item embeddings (lookups through an embedding table); the second
is a MLP network that feeds embeddings from a second set of embedding tables (one for user, one for item). Both
output vectors are combined and sent through a final MLP layer before returning a single recommendation score.

The implementation here is meant to mimic its original implementation as specified here: https://arxiv.org/pdf/
1708.05031.pdf2

All NeuralCollaborativeFiltering instances are subclasses of the LightningModule class provided by
PyTorch Lightning. This means to train a model, you will need a collie.model.CollieTrainer object, but
the model can be saved and loaded without this Trainer instance. Example usage may look like:

from collie.model import CollieTrainer, NeuralCollaborativeFiltering

model = NeuralCollaborativeFiltering(train=train)
trainer = CollieTrainer(model)

(continues on next page)

2 Xiangnan et al. “Neural Collaborative Filtering.” Neural Collaborative Filtering | Proceedings of the 26th International Conference on World
Wide Web, 1 Apr. 2017, dl.acm.org/doi/10.1145/3038912.3052569.

50 Chapter 4. Models

https://arxiv.org/pdf/1708.05031.pdf
https://arxiv.org/pdf/1708.05031.pdf

collie, Release 1.3.1

(continued from previous page)

trainer.fit(model)
model.eval()

do evaluation as normal with ``model``

model.save_model(filename='model.pth')
new_model = NeuralCollaborativeFiltering(load_model_path='model.pth')

do evaluation as normal with ``new_model``

Parameters
• train (collie.interactions object) – Data loader for training data. If an
Interactions object is supplied, an InteractionsDataLoader will automatically be
instantiated with shuffle=True

• val (collie.interactions object) – Data loader for validation data. If an Interactions
object is supplied, an InteractionsDataLoader will automatically be instantiated with
shuffle=False

• embedding_dim (int) – Number of latent factors to use for the matrix factorization em-
bedding table. For the MLP embedding table, the dimensionality will be calculated with the
formula embedding_dim * (2 ** (num_layers - 1))

• num_layers (int) – Number of MLP layers to apply. Each MLP layer will have its in-
put dimension calculated with the formula embedding_dim * (2 ** (``num_layers -
current_layer_number))``

• final_layer (str or function) – Final layer activation function. Available string op-
tions include:

– ’sigmoid’

– ’relu’

– ’leaky_relu’

• dropout_p (float) – Probability of dropout on the MLP layers

• lr (float) – Model learning rate

• lr_scheduler_func (torch.optim.lr_scheduler) – Learning rate scheduler to use
during fitting

• weight_decay (float) – Weight decay passed to the optimizer, if optimizer permits

• optimizer (torch.optim or str) – If a string, one of the following supported optimiz-
ers:

– 'sgd' (for torch.optim.SGD)

– 'adam' (for torch.optim.Adam)

• loss (function or str) – If a string, one of the following implemented losses:

– 'bpr' / 'adaptive_bpr' (implicit data)

– 'hinge' / 'adaptive_hinge' (implicit data)

– 'warp' (implicit data)

– 'mse' (explicit data)

4.1. Standard Models 51

collie, Release 1.3.1

– 'mae' (explicit data)

For implicit data, if train.num_negative_samples > 1, the adaptive loss version will
automatically be used of the losses above (except for WARP loss, which is only adaptive by
nature).

If a callable is passed, that function will be used for calculating the loss. For implicit mod-
els, the first two arguments passed will be the positive and negative predictions, respec-
tively. Additional keyword arguments passed in order are num_items, positive_items,
negative_items, metadata, and metadata_weights. For explicit models, the only two
arguments passed in will be the prediction and actual rating values, in order.

• metadata_for_loss (dict) – Keys should be strings identifying each metadata type
that match keys in metadata_weights. Values should be a torch.tensor of shape
(num_items x 1). Each tensor should contain categorical metadata information about items
(e.g. a number representing the genre of the item)

• metadata_for_loss_weights (dict) – Keys should be strings identifying each meta-
data type that match keys in metadata. Values should be the amount of weight to
place on a match of that type of metadata, with the sum of all values <= 1. e.g. If
metadata_for_loss_weights = {'genre': .3, 'director': .2}, then an item
is:

– a 100% match if it’s the same item,

– a 50% match if it’s a different item with the same genre and same director,

– a 30% match if it’s a different item with the same genre and different director,

– a 20% match if it’s a different item with a different genre and same director,

– a 0% match if it’s a different item with a different genre and different director, which is
equivalent to the loss without any partial credit

• load_model_path (str or Path) – To load a previously-saved model for inference, pass
in path to output of model.save_model() method. Note that datasets and optimizers will
NOT be restored. If None, will initialize model as normal

• map_location (str or torch.device) – If load_model_path is provided, device
specifying how to remap storage locations when torch.load-ing the state dictionary

References

forward(users: tensor, items: tensor)→ tensor
Forward pass through the model.

Parameters
• users (tensor, 1-d) – Array of user indices

• items (tensor, 1-d) – Array of item indices

Returns
preds – Predicted ratings or rankings

Return type
tensor, 1-d

52 Chapter 4. Models

collie, Release 1.3.1

4.1.6 Deep Factorization Machine (DeepFM)

class collie.model.DeepFM(train: ~typ-
ing.Optional[~typing.Union[~collie.interactions.dataloaders.ApproximateNegativeSamplingInteractionsDataLoader,
~collie.interactions.datasets.Interactions,
~collie.interactions.dataloaders.InteractionsDataLoader]] = None, val: ~typ-
ing.Optional[~typing.Union[~collie.interactions.dataloaders.ApproximateNegativeSamplingInteractionsDataLoader,
~collie.interactions.datasets.Interactions,
~collie.interactions.dataloaders.InteractionsDataLoader]] = None,
embedding_dim: int = 8, num_layers: int = 3, final_layer:
~typing.Optional[~typing.Union[str, ~typing.Callable[[...], ~typing.Any]]] =
None, dropout_p: float = 0.0, lr: float = 0.001, bias_lr:
~typing.Optional[~typing.Union[float, str]] = 0.01, lr_scheduler_func:
~typing.Optional[~torch.optim.lr_scheduler._LRScheduler] =
functools.partial(<class 'torch.optim.lr_scheduler.ReduceLROnPlateau'>,
patience=1, verbose=True), weight_decay: float = 0.0, optimizer:
~typing.Union[str, ~torch.optim.optimizer.Optimizer] = 'adam', bias_optimizer:
~typing.Optional[~typing.Union[str, ~torch.optim.optimizer.Optimizer]] = 'sgd',
loss: ~typing.Union[str, ~typing.Callable[[...],
~torch._VariableFunctionsClass.tensor]] = 'hinge', metadata_for_loss:
~typing.Optional[~typing.Dict[str, ~torch._VariableFunctionsClass.tensor]] =
None, metadata_for_loss_weights: ~typing.Optional[~typing.Dict[str, float]] =
None, load_model_path: ~typing.Optional[str] = None, map_location:
~typing.Optional[str] = None)

Bases: BasePipeline

Training pipeline for a deep factorization model.

DeepFM models combine a shallow factorization machine and a deep multilayer perceptron network in a single,
unified model. The model consists of embedding tables for users and items, and model output is the sum of 1)
factorization machine output of both embeddings (shallow) and 2) MLP output for the concatenation of both
embeddings (deep).

The implementation here is meant to mimic its original implementation as specified here: https://arxiv.org/pdf/
1703.04247.pdf3

All DeepFM instances are subclasses of the LightningModule class provided by PyTorch Lightning. This means
to train a model, you will need a collie.model.CollieTrainer object, but the model can be saved and loaded
without this Trainer instance. Example usage may look like:

from collie.model import CollieTrainer, DeepFM

model = DeepFM(train=train)
trainer = CollieTrainer(model)
trainer.fit(model)
model.eval()

do evaluation as normal with ``model``

model.save_model(filename='model.pth')
new_model = DeepFM(load_model_path='model.pth')

do evaluation as normal with ``new_model``

3 Guo, Huifeng, et al. “DeepFM: A Factorization-Machine Based Neural Network for CTR Prediction.” ArXiv.org, 13 Mar. 2017,
arxiv.org/abs/1703.04247.

4.1. Standard Models 53

https://arxiv.org/pdf/1703.04247.pdf
https://arxiv.org/pdf/1703.04247.pdf

collie, Release 1.3.1

Parameters
• train (collie.interactions object) – Data loader for training data. If an
Interactions object is supplied, an InteractionsDataLoader will automatically be
instantiated with shuffle=True

• val (collie.interactions object) – Data loader for validation data. If an Interactions
object is supplied, an InteractionsDataLoader will automatically be instantiated with
shuffle=False

• embedding_dim (int) – Number of latent factors to use for the matrix factorization em-
bedding table. For the MLP embedding table, the dimensionality will be calculated with the
formula embedding_dim * (2 ** (num_layers - 1))

• num_layers (int) – Number of MLP layers to apply. Each MLP layer will have its in-
put dimension calculated with the formula embedding_dim * (2 ** (``num_layers -
current_layer_number))``

• final_layer (str or function) – Final layer activation function. Available string op-
tions include:

– ’sigmoid’

– ’relu’

– ’leaky_relu’

• dropout_p (float) – Probability of dropout

• lr (float) – Model learning rate

• bias_lr (float) – Bias terms learning rate. If ‘infer’, will set equal to lr

• lr_scheduler_func (torch.optim.lr_scheduler) – Learning rate scheduler to use
during fitting

• weight_decay (float) – Weight decay passed to the optimizer, if optimizer permits

• optimizer (torch.optim or str) – If a string, one of the following supported optimiz-
ers:

– 'sgd' (for torch.optim.SGD)

– 'adam' (for torch.optim.Adam)

• bias_optimizer (torch.optim or str) – Optimizer for the bias terms. This supports
the same string options as optimizer, with the addition of infer, which will set the op-
timizer equal to optimizer. If bias_optimizer is None, only a single optimizer will be
created for all model parameters

• loss (function or str) – If a string, one of the following implemented losses:

– 'bpr' / 'adaptive_bpr' (implicit data)

– 'hinge' / 'adaptive_hinge' (implicit data)

– 'warp' (implicit data)

– 'mse' (explicit data)

– 'mae' (explicit data)

For implicit data, if train.num_negative_samples > 1, the adaptive loss version will
automatically be used of the losses above (except for WARP loss, which is only adaptive by
nature).

54 Chapter 4. Models

collie, Release 1.3.1

If a callable is passed, that function will be used for calculating the loss. For implicit mod-
els, the first two arguments passed will be the positive and negative predictions, respec-
tively. Additional keyword arguments passed in order are num_items, positive_items,
negative_items, metadata, and metadata_weights. For explicit models, the only two
arguments passed in will be the prediction and actual rating values, in order.

• metadata_for_loss (dict) – Keys should be strings identifying each metadata type
that match keys in metadata_weights. Values should be a torch.tensor of shape
(num_items x 1). Each tensor should contain categorical metadata information about items
(e.g. a number representing the genre of the item)

• metadata_for_loss_weights (dict) – Keys should be strings identifying each meta-
data type that match keys in metadata. Values should be the amount of weight to
place on a match of that type of metadata, with the sum of all values <= 1. e.g. If
metadata_for_loss_weights = {'genre': .3, 'director': .2}, then an item
is:

– a 100% match if it’s the same item,

– a 50% match if it’s a different item with the same genre and same director,

– a 30% match if it’s a different item with the same genre and different director,

– a 20% match if it’s a different item with a different genre and same director,

– a 0% match if it’s a different item with a different genre and different director, which is
equivalent to the loss without any partial credit

• load_model_path (str or Path) – To load a previously-saved model for inference, pass
in path to output of model.save_model() method. Note that datasets and optimizers will
NOT be restored. If None, will initialize model as normal

• map_location (str or torch.device) – If load_model_path is provided, device
specifying how to remap storage locations when torch.load-ing the state dictionary

References

forward(users: tensor, items: tensor)→ tensor
Forward pass through the model.

Parameters
• users (tensor, 1-d) – Array of user indices

• items (tensor, 1-d) – Array of item indices

Returns
preds – Predicted ratings or rankings

Return type
tensor, 1-d

4.1. Standard Models 55

collie, Release 1.3.1

4.2 Hybrid Models

4.2.1 Hybrid Pretrained Matrix Factorization Model

class collie.model.HybridPretrainedModel(train: ~typ-
ing.Optional[~typing.Union[~collie.interactions.dataloaders.ApproximateNegativeSamplingInteractionsDataLoader,
~collie.interactions.datasets.Interactions,
~collie.interactions.dataloaders.InteractionsDataLoader]] =
None, val: ~typ-
ing.Optional[~typing.Union[~collie.interactions.dataloaders.ApproximateNegativeSamplingInteractionsDataLoader,
~collie.interactions.datasets.Interactions,
~collie.interactions.dataloaders.InteractionsDataLoader]] =
None, item_metadata: ~typ-
ing.Optional[~typing.Union[~torch._VariableFunctionsClass.tensor,
~pandas.core.frame.DataFrame, ~numpy.array]] = None,
user_metadata: ~typ-
ing.Optional[~typing.Union[~torch._VariableFunctionsClass.tensor,
~pandas.core.frame.DataFrame, ~numpy.array]] = None,
trained_model: ~typ-
ing.Optional[~collie.model.matrix_factorization.MatrixFactorizationModel]
= None, item_metadata_layers_dims:
~typing.Optional[~typing.List[int]] = None,
user_metadata_layers_dims:
~typing.Optional[~typing.List[int]] = None,
combined_layers_dims: ~typing.List[int] = [128, 64, 32],
freeze_embeddings: bool = True, dropout_p: float = 0.0, lr:
float = 0.001, lr_scheduler_func:
~typing.Optional[~torch.optim.lr_scheduler._LRScheduler] =
functools.partial(<class
'torch.optim.lr_scheduler.ReduceLROnPlateau'>, patience=1,
verbose=True), weight_decay: float = 0.0, optimizer:
~typing.Union[str, ~torch.optim.optimizer.Optimizer] = 'adam',
loss: ~typing.Union[str, ~typing.Callable[[...],
~torch._VariableFunctionsClass.tensor]] = 'hinge',
metadata_for_loss: ~typing.Optional[~typing.Dict[str,
~torch._VariableFunctionsClass.tensor]] = None,
metadata_for_loss_weights: ~typing.Optional[~typing.Dict[str,
float]] = None, load_model_path: ~typing.Optional[str] =
None, map_location: ~typing.Optional[str] = None)

Bases: BasePipeline

Training pipeline for a hybrid recommendation model using a pre-trained matrix factorization

model as its base.

HybridPretrainedModel models contain dense layers that process item and/or user metadata, concatenate this
embedding with the user and item embeddings copied from a trained MatrixFactorizationModel, and send
this concatenated embedding through more dense layers to output a single float ranking / rating. We add both
user and item biases to this score before returning. This is the same architecture as the HybridModel, but we
are using the embeddings from a pre-trained model rather than training them up ourselves.

All HybridPretrainedModel instances are subclasses of the LightningModule class provided by PyTorch
Lightning. This means to train a model, you will need a collie.model.CollieTrainer object, but the model
can be saved and loaded without this Trainer instance. Example usage may look like:

56 Chapter 4. Models

collie, Release 1.3.1

from collie.model import CollieTrainer, HybridPretrainedModel,␣
→˓MatrixFactorizationModel

instantiate and fit a ``MatrixFactorizationModel`` as expected
mf_model = MatrixFactorizationModel(train=train)
mf_trainer = CollieTrainer(mf_model)
mf_trainer.fit(mf_model)

hybrid_model = HybridPretrainedModel(train=train,
item_metadata=item_metadata,
user_metadata=user_metadata,
trained_model=mf_model)

hybrid_trainer = CollieTrainer(hybrid_model)
hybrid_trainer.fit(hybrid_model)
hybrid_model.eval()

do evaluation as normal with ``hybrid_model``

hybrid_model.save_model(path='model')
new_hybrid_model = HybridPretrainedModel(load_model_path='model')

do evaluation as normal with ``new_hybrid_model``

Parameters
• train (collie.interactions object) – Data loader for training data. If an
Interactions object is supplied, an InteractionsDataLoader will automatically be
instantiated with shuffle=True

• val (collie.interactions object) – Data loader for validation data. If an Interactions
object is supplied, an InteractionsDataLoader will automatically be instantiated with
shuffle=False

• item_metadata (torch.tensor, pd.DataFrame, or np.array, 2-dimensional)
– The shape of the item metadata should be (num_items x metadata_features), and each
item’s metadata should be available when indexing a row by an item ID

• user_metadata (torch.tensor, pd.DataFrame, or np.array, 2-dimensional)
– The shape of the user metadata should be (num_users x metadata_features), and each user’s
metadata should be available when indexing a row by an item ID

• trained_model (collie.model.MatrixFactorizationModel) – Previously trained
MatrixFactorizationModel model to extract embeddings from

• item_metadata_layers_dims (list) – List of linear layer dimensions to apply to the
item metadata only, starting with the dimension directly following metadata_features
and ending with the dimension to concatenate with the item embeddings

• user_metadata_layers_dims (list) – List of linear layer dimensions to apply to the
user metadata only, starting with the dimension directly following metadata_features
and ending with the dimension to concatenate with the user embeddings

• combined_layers_dims (list) – List of linear layer dimensions to apply to the concate-
nated item embeddings and item metadata, starting with the dimension directly following
the shape of item_embeddings + metadata_features and ending with the dimension
before the final linear layer to dimension 1

4.2. Hybrid Models 57

collie, Release 1.3.1

• freeze_embeddings (bool) – When initializing the model, whether or not to freeze
trained_model’s embeddings

• dropout_p (float) – Probability of dropout

• lr (float) – Model learning rate

• lr_scheduler_func (torch.optim.lr_scheduler) – Learning rate scheduler to use
during fitting

• weight_decay (float) – Weight decay passed to the optimizer, if optimizer permits

• optimizer (torch.optim or str) – If a string, one of the following supported optimiz-
ers:

– 'sgd' (for torch.optim.SGD)

– 'adam' (for torch.optim.Adam)

• loss (function or str) – If a string, one of the following implemented losses:

– 'bpr' / 'adaptive_bpr' (implicit data)

– 'hinge' / 'adaptive_hinge' (implicit data)

– 'warp' (implicit data)

– 'mse' (explicit data)

– 'mae' (explicit data)

For implicit data, if train.num_negative_samples > 1, the adaptive loss version will
automatically be used of the losses above (except for WARP loss, which is only adaptive by
nature).

If a callable is passed, that function will be used for calculating the loss. For implicit mod-
els, the first two arguments passed will be the positive and negative predictions, respec-
tively. Additional keyword arguments passed in order are num_items, positive_items,
negative_items, metadata, and metadata_weights. For explicit models, the only two
arguments passed in will be the prediction and actual rating values, in order.

• metadata_for_loss (dict) – Keys should be strings identifying each metadata type
that match keys in metadata_weights. Values should be a torch.tensor of shape
(num_items x 1). Each tensor should contain categorical metadata information about items
(e.g. a number representing the genre of the item)

• metadata_for_loss_weights (dict) – Keys should be strings identifying each meta-
data type that match keys in metadata. Values should be the amount of weight to
place on a match of that type of metadata, with the sum of all values <= 1. e.g. If
metadata_for_loss_weights = {'genre': .3, 'director': .2}, then an item
is:

– a 100% match if it’s the same item,

– a 50% match if it’s a different item with the same genre and same director,

– a 30% match if it’s a different item with the same genre and different director,

– a 20% match if it’s a different item with a different genre and same director,

– a 0% match if it’s a different item with a different genre and different director, which is
equivalent to the loss without any partial credit

58 Chapter 4. Models

collie, Release 1.3.1

• load_model_path (str or Path) – To load a previously-saved model for inference, pass
in path to output of model.save_model() method. Note that datasets and optimizers will
NOT be restored. If None, will initialize model as normal

• map_location (str or torch.device) – If load_model_path is provided, device
specifying how to remap storage locations when torch.load-ing the state dictionary

forward(users: tensor, items: tensor)→ tensor
Forward pass through the model.

Parameters
• users (tensor, 1-d) – Array of user indices

• items (tensor, 1-d) – Array of item indices

Returns
preds – Predicted ratings or rankings

Return type
tensor, 1-d

freeze_embeddings()→ None
Remove gradient requirement from the embeddings.

load_from_hybrid_model(hybrid_model)→ None
Copy hyperparameters and state dictionary from an existing HybridPretrainedModel instance.

This is particularly useful for creating another PyTorch Lightning trainer object to fine-tune copied-over
embeddings from a MatrixFactorizationModel instance.

Parameters
hybrid_model (collie.model.HybridPretrainedModel) – HybridPretrainedModel
containing hyperparameters and state dictionary to copy over

save_model(path: Union[str, Path] = 'data/model', overwrite: bool = False)→ None
Save the model’s state dictionary, hyperparameters, and user and/or item metadata.

While PyTorch Lightning offers a way to save and load models, there are two main reasons for overriding
these:

1) To properly save and load a model requires the Trainer object, meaning that all deployed models will
require Lightning to run the model, which is not actually needed for inference.

2) In the v0.8.4 release, loading a model back in leads to a RuntimeError unable to load in weights.

Parameters
• path (str or Path) – Directory path to save model and data files

• overwrite (bool) – Whether or not to overwrite existing data

unfreeze_embeddings()→ None
Require gradients for the embeddings.

4.2. Hybrid Models 59

collie, Release 1.3.1

4.3 Multi-Stage Models

4.3.1 Cold Start Matrix Factorization Model

class collie.model.ColdStartModel(train: ~typ-
ing.Optional[~typing.Union[~collie.interactions.dataloaders.ApproximateNegativeSamplingInteractionsDataLoader,
~collie.interactions.datasets.Interactions,
~collie.interactions.dataloaders.InteractionsDataLoader]] = None, val:
~typ-
ing.Optional[~typing.Union[~collie.interactions.dataloaders.ApproximateNegativeSamplingInteractionsDataLoader,
~collie.interactions.datasets.Interactions,
~collie.interactions.dataloaders.InteractionsDataLoader]] = None,
item_buckets: ~typing.Optional[~typing.Iterable[int]] = None,
embedding_dim: int = 30, dropout_p: float = 0.0, sparse: bool = False,
item_buckets_stage_lr: float = 0.001, no_buckets_stage_lr: float =
0.001, lr_scheduler_func:
~typing.Optional[~torch.optim.lr_scheduler._LRScheduler] =
functools.partial(<class
'torch.optim.lr_scheduler.ReduceLROnPlateau'>, patience=1,
verbose=False), weight_decay: float = 0.0,
item_buckets_stage_optimizer: ~typing.Union[str,
~torch.optim.optimizer.Optimizer] = 'adam',
no_buckets_stage_optimizer: ~typing.Union[str,
~torch.optim.optimizer.Optimizer] = 'adam', loss: ~typing.Union[str,
~typing.Callable[[...], ~torch._VariableFunctionsClass.tensor]] =
'hinge', metadata_for_loss: ~typing.Optional[~typing.Dict[str,
~torch._VariableFunctionsClass.tensor]] = None,
metadata_for_loss_weights: ~typing.Optional[~typing.Dict[str, float]]
= None, load_model_path: ~typing.Optional[str] = None,
map_location: ~typing.Optional[str] = None)

Bases: MultiStagePipeline

Training pipeline for a matrix factorization model optimized for the cold-start problem.

Many recommendation models suffer from the cold start problem, when a model is unable to provide adequate
recommendations for a new item until enough users have interacted with it. But, if users only interact with rec-
ommended items, the item will never be recommended, and thus the model will never improve recommendations
for this item.

The ColdStartModel attempts to bypass this by limiting the item space down to “item buckets”, training a
model on this as the item space, then expanding out to all items. During this expansion, the learned-embeddings
of each bucket is copied over to each corresponding item, providing a smarter initialization than a random one for
both existing and new items. Now, when we have a new item, we can use its bucket embedding as an initialization
into a model.

The stages in a ColdStartModel are, in order:

1. item_buckets
Matrix factorization with item embeddings and bias terms bucketed by item_buckets argument.
Unlike in the next stage, many items may map on to a single bucket, and this will share the same
embedding and bias representation. The model should learn user preference for buckets in this stage.

2. no_buckets
Standard matrix factorization as we do in MatrixFactorizationModel. However, upon advancing
to this stage, the item embeddings are initialized with their bucketed embedding value (and same
for biases). Not only does this provide better initialization than random, but allows new items to be

60 Chapter 4. Models

collie, Release 1.3.1

incorporated into the model without training by using their item bucket embedding and bias terms at
prediction time.

Note that the cold start problem exists for new users as well, but this functionality will be added to this model in
a future version.

All ColdStartModel instances are subclasses of the LightningModule class provided by PyTorch Lightning.
This means to train a model, you will need a collie.model.CollieTrainer object, but the model can be
saved and loaded without this Trainer instance. Example usage may look like:

from collie.model import ColdStartModel, CollieTrainer

instantiate and fit a ``ColdStartModel`` as expected
model = ColdStartModel(train=train, item_buckets=item_buckets)
trainer = CollieTrainer(model)
trainer.fit(model)

train for X more epochs on the next stage, ``no_buckets``
trainer.max_epochs += X
model.advance_stage()
trainer.fit(model)

model.eval()

do evaluation as normal with ``model``

get item-item recommendations for a new item by using the bucket ID, Z
similar_items = model.item_bucket_item_similarity(item_bucket_id=Z)

model.save_model(filename='model.pth')
new_model = ColdStartModel(load_model_path='model.pth')

do evaluation as normal with ``new_model``

Parameters
• train (collie.interactions object) – Data loader for training data. If an
Interactions object is supplied, an InteractionsDataLoader will automatically be
instantiated with shuffle=True

• val (collie.interactions object) – Data loader for validation data. If an Interactions
object is supplied, an InteractionsDataLoader will automatically be instantiated with
shuffle=False

• item_buckets (torch.tensor, 1-d) – An ordered iterable containing the bucket ID for
each item ID. For example, if you have five films and are going to bucket by primary genre,
and your data looks like:

– Item ID: 0, Genre ID: 1

– Item ID: 1, Genre ID: 0

– Item ID: 2, Genre ID: 2

– Item ID: 3, Genre ID: 2

– Item ID: 4, Genre ID: 1

Then item_buckets would be: [1, 0, 2, 2, 1]

4.3. Multi-Stage Models 61

collie, Release 1.3.1

• embedding_dim (int) – Number of latent factors to use for user and item embeddings

• dropout_p (float) – Probability of dropout

• item_buckets_stage_lr (float) – Optimizer used for user parameters and item bucket
parameters optimized during the item_buckets stage. If a string, one of the following
supported optimizers:

– 'sgd' (for torch.optim.SGD)

– 'adam' (for torch.optim.Adam)

• no_buckets_stage_lr (float) – Optimizer used for user parameters and item parame-
ters optimized during the no_buckets stage. If a string, one of the following supported
optimizers:

– 'sgd' (for torch.optim.SGD)

– 'adam' (for torch.optim.Adam)

• lr_scheduler_func (torch.optim.lr_scheduler) – Learning rate scheduler to use
during fitting

• weight_decay (float) – Weight decay passed to the optimizer, if optimizer permits

• loss (function or str) – If a string, one of the following implemented losses:

– 'bpr' / 'adaptive_bpr' (implicit data)

– 'hinge' / 'adaptive_hinge' (implicit data)

– 'warp' (implicit data)

– 'mse' (explicit data)

– 'mae' (explicit data)

For implicit data, if train.num_negative_samples > 1, the adaptive loss version will
automatically be used of the losses above (except for WARP loss, which is only adaptive by
nature).

If a callable is passed, that function will be used for calculating the loss. For implicit mod-
els, the first two arguments passed will be the positive and negative predictions, respec-
tively. Additional keyword arguments passed in order are num_items, positive_items,
negative_items, metadata, and metadata_weights. For explicit models, the only two
arguments passed in will be the prediction and actual rating values, in order.

• metadata_for_loss (dict) – Keys should be strings identifying each metadata type
that match keys in metadata_weights. Values should be a torch.tensor of shape
(num_items x 1). Each tensor should contain categorical metadata information about items
(e.g. a number representing the genre of the item)

• metadata_for_loss_weights (dict) – Keys should be strings identifying each meta-
data type that match keys in metadata. Values should be the amount of weight to
place on a match of that type of metadata, with the sum of all values <= 1. e.g. If
metadata_for_loss_weights = {'genre': .3, 'director': .2}, then an item
is:

– a 100% match if it’s the same item,

– a 50% match if it’s a different item with the same genre and same director,

– a 30% match if it’s a different item with the same genre and different director,

– a 20% match if it’s a different item with a different genre and same director,

62 Chapter 4. Models

collie, Release 1.3.1

– a 0% match if it’s a different item with a different genre and different director, which is
equivalent to the loss without any partial credit

• load_model_path (str or Path) – To load a previously-saved model for inference, pass
in path to output of model.save_model() method. Note that datasets and optimizers will
NOT be restored. If None, will initialize model as normal

• map_location (str or torch.device) – If load_model_path is provided, device
specifying how to remap storage locations when torch.load-ing the state dictionary

Notes

The forward calculation will be different depending on the stage that is set. Note this when evaluating / saving
and loading models in.

forward(users: tensor, items: tensor)→ tensor
Forward pass through the model.

Parameters
• users (tensor, 1-d) – Array of user indices

• items (tensor, 1-d) – Array of item indices

Returns
preds – Predicted ratings or rankings

Return type
tensor, 1-d

item_bucket_item_similarity(item_bucket_id: int)→ Series
Get most similar item indices to a item bucket by cosine similarity.

Cosine similarity is computed with item and item bucket embeddings from a trained model.

Parameters
item_id (int) –

Returns
sim_score_idxs – Sorted values as cosine similarity for each item in the dataset with the index
being the item ID

Return type
pd.Series

set_stage(stage: str)→ None
Set the stage for the model.

4.3.2 Hybrid Matrix Factorization Model

4.3. Multi-Stage Models 63

collie, Release 1.3.1

class collie.model.HybridModel(train: ~typ-
ing.Optional[~typing.Union[~collie.interactions.dataloaders.ApproximateNegativeSamplingInteractionsDataLoader,
~collie.interactions.datasets.Interactions,
~collie.interactions.dataloaders.InteractionsDataLoader]] = None, val:
~typ-
ing.Optional[~typing.Union[~collie.interactions.dataloaders.ApproximateNegativeSamplingInteractionsDataLoader,
~collie.interactions.datasets.Interactions,
~collie.interactions.dataloaders.InteractionsDataLoader]] = None,
item_metadata:
~typing.Optional[~typing.Union[~torch._VariableFunctionsClass.tensor,
~pandas.core.frame.DataFrame, ~numpy.array]] = None, user_metadata:
~typing.Optional[~typing.Union[~torch._VariableFunctionsClass.tensor,
~pandas.core.frame.DataFrame, ~numpy.array]] = None, embedding_dim:
int = 30, item_metadata_layers_dims: ~typing.Optional[~typing.List[int]] =
None, user_metadata_layers_dims: ~typing.Optional[~typing.List[int]] =
None, combined_layers_dims: ~typing.List[int] = [128, 64, 32], dropout_p:
float = 0.0, lr: float = 0.001, bias_lr: ~typing.Optional[~typing.Union[float,
str]] = 0.01, metadata_only_stage_lr: float = 0.001, all_stage_lr: float =
0.0001, lr_scheduler_func:
~typing.Optional[~torch.optim.lr_scheduler._LRScheduler] =
functools.partial(<class 'torch.optim.lr_scheduler.ReduceLROnPlateau'>,
patience=1, verbose=False), weight_decay: float = 0.0, optimizer:
~typing.Union[str, ~torch.optim.optimizer.Optimizer] = 'adam',
bias_optimizer: ~typing.Optional[~typing.Union[str,
~torch.optim.optimizer.Optimizer]] = 'sgd', metadata_only_stage_optimizer:
~typing.Union[str, ~torch.optim.optimizer.Optimizer] = 'adam',
all_stage_optimizer: ~typing.Union[str, ~torch.optim.optimizer.Optimizer] =
'adam', loss: ~typing.Union[str, ~typing.Callable[[...],
~torch._VariableFunctionsClass.tensor]] = 'hinge', metadata_for_loss:
~typing.Optional[~typing.Dict[str, ~torch._VariableFunctionsClass.tensor]]
= None, metadata_for_loss_weights: ~typing.Optional[~typing.Dict[str,
float]] = None, load_model_path: ~typing.Optional[str] = None,
map_location: ~typing.Optional[str] = None)

Bases: MultiStagePipeline

Training pipeline for a multi-stage hybrid recommendation model.

HybridModel models contain dense layers that process item and/or user metadata, concatenate this embedding
with user and item embeddings, sending this concatenated embedding through more dense layers to output a
single float ranking / rating. We add both user and item biases to this score before returning. This is the same
architecture as the HybridPretrainedModel, but we are training the embeddings ourselves rather than relying
on pulling this from a pre-trained model.

The stages in a HybridModel depend on whether both item and user metadata is used. For the full model, they
are, in order:

1. matrix_factorization
Matrix factorization exactly as we do in MatrixFactorizationModel. In this stage, metadata is
NOT incorporated into the model.

2. metadata_only
User and item embeddings terms are frozen, and the MLP layers for the metadata (if specified) and
combined embedding-metadata data are optimized.

3. all
Embedding and MLP layers are all optimized together, including those for metadata.

64 Chapter 4. Models

collie, Release 1.3.1

All HybridModel instances are subclasses of the LightningModule class provided by PyTorch Lightning. This
means to train a model, you will need a collie.model.CollieTrainer object, but the model can be saved
and loaded without this Trainer instance. Example usage may look like:

from collie.model import CollieTrainer, HybridModel

instantiate and fit a ``HybridModel`` as expected
model = HybridModel(train=train,

item_metadata=item_metadata,
user_metadata=user_metadata)

trainer = CollieTrainer(model)
trainer.fit(model)

train for X more epochs on the next stage, ``metadata_only``
trainer.max_epochs += X
model.advance_stage()
trainer.fit(model)

train for Y more epochs on the next stage, ``all``
trainer.max_epochs += Y
model.advance_stage()
trainer.fit(model)

model.eval()

do evaluation as normal with ``model``

model.save_model(path='model')
new_model = HybridModel(load_model_path='model')

do evaluation as normal with ``new_model``

Parameters
• train (collie.interactions object) – Data loader for training data. If an
Interactions object is supplied, an InteractionsDataLoader will automatically be
instantiated with shuffle=True

• val (collie.interactions object) – Data loader for validation data. If an Interactions
object is supplied, an InteractionsDataLoader will automatically be instantiated with
shuffle=False

• item_metadata (torch.tensor, pd.DataFrame, or np.array, 2-dimensional)
– The shape of the item metadata should be (num_items x metadata_features), and each
item’s metadata should be available when indexing a row by an item ID

• user_metadata (torch.tensor, pd.DataFrame, or np.array, 2-dimensional)
– The shape of the user metadata should be (num_users x metadata_features), and each user’s
metadata should be available when indexing a row by a user ID

• embedding_dim (int) – Number of latent factors to use for user and item embeddings

• item_metadata_layers_dims (list) – List of linear layer dimensions to apply to the item
metadata only, starting with the dimension directly following item_metadata_features
and ending with the dimension to concatenate with the item embeddings

• user_metadata_layers_dims (list) – List of linear layer dimensions to apply to the user

4.3. Multi-Stage Models 65

collie, Release 1.3.1

metadata only, starting with the dimension directly following user_metadata_features
and ending with the dimension to concatenate with the user embeddings

• combined_layers_dims (list) – List of linear layer dimensions to apply to the concate-
nated item embeddings and item metadata, starting with the dimension directly following
the shape of item_embeddings + metadata_features and ending with the dimension
before the final linear layer to dimension 1

• dropout_p (float) – Probability of dropout

• metadata_only_stage_lr (float) – Learning rate for metadata and combined layers op-
timized during the metadata_only stage

• all_stage_lr (float) – Learning rate for all model parameters optimized during the all
stage

• lr_scheduler_func (torch.optim.lr_scheduler) – Learning rate scheduler to use
during fitting

• weight_decay (float) – Weight decay passed to the optimizer, if optimizer permits

• optimizer (torch.optim or str) – Optimizer used for embeddings and bias terms (if
bias_optimizer is None) during the matrix_factorization stage. If a string, one of
the following supported optimizers:

– 'sgd' (for torch.optim.SGD)

– 'adam' (for torch.optim.Adam)

• metadata_only_stage_optimizer (torch.optim or str) – Optimizer used for meta-
data and combined layers during the metadata_only stage. If a string, one of the following
supported optimizers:

– 'sgd' (for torch.optim.SGD)

– 'adam' (for torch.optim.Adam)

• all_stage_optimizer (torch.optim or str) – Optimizer used for all model parame-
ters during the all stage. If a string, one of the following supported optimizers:

– 'sgd' (for torch.optim.SGD)

– 'adam' (for torch.optim.Adam)

• loss (function or str) – If a string, one of the following implemented losses:

– 'bpr' / 'adaptive_bpr' (implicit data)

– 'hinge' / 'adaptive_hinge' (implicit data)

– 'warp' (implicit data)

– 'mse' (explicit data)

– 'mae' (explicit data)

For implicit data, if train.num_negative_samples > 1, the adaptive loss version will
automatically be used of the losses above (except for WARP loss, which is only adaptive by
nature).

If a callable is passed, that function will be used for calculating the loss. For implicit mod-
els, the first two arguments passed will be the positive and negative predictions, respec-
tively. Additional keyword arguments passed in order are num_items, positive_items,
negative_items, metadata, and metadata_weights. For explicit models, the only two
arguments passed in will be the prediction and actual rating values, in order.

66 Chapter 4. Models

collie, Release 1.3.1

• metadata_for_loss (dict) – Keys should be strings identifying each metadata type
that match keys in metadata_weights. Values should be a torch.tensor of shape
(num_items x 1). Each tensor should contain categorical metadata information about items
(e.g. a number representing the genre of the item)

• metadata_for_loss_weights (dict) – Keys should be strings identifying each meta-
data type that match keys in metadata. Values should be the amount of weight to
place on a match of that type of metadata, with the sum of all values <= 1. e.g. If
metadata_for_loss_weights = {'genre': .3, 'director': .2}, then an item
is:

– a 100% match if it’s the same item,

– a 50% match if it’s a different item with the same genre and same director,

– a 30% match if it’s a different item with the same genre and different director,

– a 20% match if it’s a different item with a different genre and same director,

– a 0% match if it’s a different item with a different genre and different director, which is
equivalent to the loss without any partial credit

• load_model_path (str or Path) – To load a previously-saved model for inference, pass
in path to output of model.save_model() method. Note that datasets and optimizers will
NOT be restored. If None, will initialize model as normal

• map_location (str or torch.device) – If load_model_path is provided, device
specifying how to remap storage locations when torch.load-ing the state dictionary

Notes

The forward calculation will be different depending on the stage that is set. Note this when evaluating / saving
and loading models in.

forward(users: tensor, items: tensor)→ tensor
Forward pass through the model.

Parameters
• users (tensor, 1-d) – Array of user indices

• items (tensor, 1-d) – Array of item indices

Returns
preds – Predicted ratings or rankings

Return type
tensor, 1-d

save_model(path: Union[str, Path] = 'data/model', overwrite: bool = False)→ None
Save the model’s state dictionary, hyperparameters, and user and/or item metadata.

While PyTorch Lightning offers a way to save and load models, there are two main reasons for overriding
these:

1) To properly save and load a model requires the Trainer object, meaning that all deployed models will
require Lightning to run the model, which is not actually needed for inference.

2) In the v0.8.4 release, loading a model back in leads to a RuntimeError unable to load in weights.

Parameters

4.3. Multi-Stage Models 67

collie, Release 1.3.1

• path (str or Path) – Directory path to save model and data files

• overwrite (bool) – Whether or not to overwrite existing data

4.4 Trainers

4.4.1 PyTorch Lightning Trainer

class collie.model.CollieTrainer(model: Module, max_epochs: int = 10, benchmark: bool = True,
deterministic: bool = True, **kwargs)

Bases: Trainer

Helper wrapper class around PyTorch Lightning’s Trainer class.

Specifically, this wrapper:

• Checks if a model has a validation dataset passed in (under the val_loader attribute) and, if not, sets
num_sanity_val_steps to 0 and check_val_every_n_epoch to sys.maxint.

• Checks if a GPU is available and, if gpus is None, sets gpus = -1.

See pytorch_lightning.Trainer documentation for more details at: https://pytorch-lightning.readthedocs.
io/en/latest/common/trainer.html#trainer-class-api

Compared with CollieMinimalTrainer, PyTorch Lightning’s Trainer offers more flexibility and room for
exploration, at the cost of a higher training time (which is especially true for larger models). We recom-
mend starting all model exploration with this CollieTrainer (callbacks, automatic Lightning optimizations,
etc.), finding a set of hyperparameters that work for your training job, then using this in the simpler but faster
CollieMinimalTrainer.

Parameters
• model (collie.model.BasePipeline) – Initialized Collie model

• max_epochs (int) – Stop training once this number of epochs is reached

• benchmark (bool) – If set to True, enables cudnn.benchmark

• deterministic (bool) – If set to True, enables cudnn.deterministic

• **kwargs (keyword arguments) – Additional keyword arguments to be sent to the
Trainer class: https://pytorch-lightning.readthedocs.io/en/latest/common/trainer.html#
trainer-class-api

• follows (Original pytorch_lightning.Trainer docstring as) –

• ######## – Customize every aspect of training via flags.

Args:

accelerator: Supports passing different accelerator types (“cpu”, “gpu”, “tpu”,
“ipu”, “hpu”, “mps”, “auto”)

as well as custom accelerator instances.

accumulate_grad_batches: Accumulates grads every k batches or as set up in the
dict.

Default: None.

amp_backend: The mixed precision backend to use (“native” or “apex”).
Default: 'native''.

68 Chapter 4. Models

https://pytorch-lightning.readthedocs.io/en/latest/common/trainer.html#trainer-class-api
https://pytorch-lightning.readthedocs.io/en/latest/common/trainer.html#trainer-class-api
https://pytorch-lightning.readthedocs.io/en/latest/common/trainer.html#trainer-class-api
https://pytorch-lightning.readthedocs.io/en/latest/common/trainer.html#trainer-class-api

collie, Release 1.3.1

Deprecated since version v1.9: Setting amp_backend inside the Trainer is depre-
cated in v1.8.0 and will be removed in v2.0.0. This argument was only relevant for
apex which is being removed.

amp_level: The optimization level to use (O1, O2, etc. . .). By default it will be set
to “O2”

if amp_backend is set to “apex”.

Deprecated since version v1.8: Setting amp_level inside the Trainer is deprecated
in v1.8.0 and will be removed in v2.0.0.

auto_lr_find: If set to True, will make trainer.tune() run a learning rate finder,
trying to optimize initial learning for faster convergence. trainer.tune() method will
set the suggested learning rate in self.lr or self.learning_rate in the LightningModule.
To use a different key set a string instead of True with the key name. Default: False.

auto_scale_batch_size: If set to True, will initially run a batch size
finder trying to find the largest batch size that fits into memory. The result will be
stored in self.batch_size in the LightningModule or LightningDataModule depending
on your setup. Additionally, can be set to either power that estimates the batch size
through a power search or binsearch that estimates the batch size through a binary
search. Default: False.

auto_select_gpus: If enabled and gpus or devices is an integer, pick available
gpus automatically. This is especially useful when GPUs are configured to be in
“exclusive mode”, such that only one process at a time can access them. Default:
False.

Deprecated since version v1.9: auto_select_gpus has been depre-
cated in v1.9.0 and will be removed in v2.0.0. Please use the function
find_usable_cuda_devices() instead.

benchmark: The value (True or False) to set
torch.backends.cudnn.benchmark to.

The value for torch.backends.cudnn.benchmark set in the cur-
rent session will be used (False if not manually set). If :param-
ref:`~pytorch_lightning.trainer.Trainer.deterministic` is set to True, this
will default to False. Override to manually set a different value. Default: None.

callbacks: Add a callback or list of callbacks.
Default: None.

enable_checkpointing: If True, enable checkpointing.
It will configure a default ModelCheckpoint callback if
there is no user-defined ModelCheckpoint in :param-
ref:`~pytorch_lightning.trainer.trainer.Trainer.callbacks`. Default: True.

check_val_every_n_epoch: Perform a validation loop every after every N training
epochs. If None,

validation will be done solely based on the number of training batches, requiring
val_check_interval to be an integer value. Default: 1.

default_root_dir: Default path for logs and weights when no
logger/ckpt_callback passed.

Default: os.getcwd(). Can be remote file paths such as s3://mybucket/path or
‘hdfs://path/’

detect_anomaly: Enable anomaly detection for the autograd engine.
Default: False.

4.4. Trainers 69

collie, Release 1.3.1

deterministic: If True, sets whether PyTorch operations must use deterministic
algorithms.

Set to "warn" to use deterministic algorithms whenever possible, throwing warnings
on operations that don’t support deterministic mode (requires PyTorch 1.11+). If not
set, defaults to False. Default: None.

devices: Will be mapped to either gpus, tpu_cores, num_processes or ipus,
based on the accelerator type.

fast_dev_run: Runs n if set to n (int) else 1 if set to True batch(es)
of train, val and test to find any bugs (ie: a sort of unit test). Default: False.

gpus: Number of GPUs to train on (int) or which GPUs to train on (list or str)
applied per node

Default: None.

Deprecated since version v1.7: gpus has been deprecated in v1.7 and will be removed
in v2.0. Please use accelerator='gpu' and devices=x instead.

gradient_clip_val: The value at which to clip gradients. Passing
gradient_clip_val=None disables

gradient clipping. If using Automatic Mixed Precision (AMP), the gradients will be
unscaled before. Default: None.

gradient_clip_algorithm: The gradient clipping algorithm to use. Pass
gradient_clip_algorithm="value"

to clip by value, and gradient_clip_algorithm="norm" to clip by norm. By
default it will be set to "norm".

limit_train_batches: How much of training dataset to check (float = fraction, int
= num_batches).

Default: 1.0.

limit_val_batches: How much of validation dataset to check (float = fraction, int
= num_batches).

Default: 1.0.

limit_test_batches: How much of test dataset to check (float = fraction, int =
num_batches).

Default: 1.0.

limit_predict_batches: How much of prediction dataset to check (float = fraction,
int = num_batches).

Default: 1.0.

logger: Logger (or iterable collection of loggers) for experiment tracking. A True
value uses

the default TensorBoardLogger if it is installed, otherwise CSVLogger. Falsewill
disable logging. If multiple loggers are provided, local files (checkpoints, profiler
traces, etc.) are saved in the log_dir of he first logger. Default: True.

log_every_n_steps: How often to log within steps.
Default: 50.

enable_progress_bar: Whether to enable to progress bar by default.
Default: True.

profiler: To profile individual steps during training and assist in identifying
bottlenecks.

Default: None.

overfit_batches: Overfit a fraction of training/validation data (float) or a set
number of batches (int).

Default: 0.0.

70 Chapter 4. Models

collie, Release 1.3.1

plugins: Plugins allow modification of core behavior like ddp and amp, and
enable custom lightning plugins.

Default: None.

precision: Double precision (64), full precision (32), half precision (16) or
bfloat16 precision (bf16).

Can be used on CPU, GPU, TPUs, HPUs or IPUs. Default: 32.

max_epochs: Stop training once this number of epochs is reached. Disabled by
default (None).

If both max_epochs and max_steps are not specified, defaults to max_epochs =
1000. To enable infinite training, set max_epochs = -1.

min_epochs: Force training for at least these many epochs. Disabled by default (None).

max_steps: Stop training after this number of steps. Disabled by default (-1). If
max_steps = -1

and max_epochs = None, will default to max_epochs = 1000. To enable infinite
training, set max_epochs to -1.

min_steps: Force training for at least these number of steps. Disabled by default (None).

max_time: Stop training after this amount of time has passed. Disabled by
default (None).

The time duration can be specified in the format DD:HH:MM:SS (days, hours, min-
utes seconds), as a datetime.timedelta, or a dictionary with keys that will be
passed to datetime.timedelta.

num_nodes: Number of GPU nodes for distributed training.
Default: 1.

num_processes: Number of processes for distributed training with
accelerator="cpu".

Default: 1.

Deprecated since version v1.7: num_processes has been deprecated in v1.7 and
will be removed in v2.0. Please use accelerator='cpu' and devices=x instead.

num_sanity_val_steps: Sanity check runs n validation batches before starting the
training routine.

Set it to -1 to run all batches in all validation dataloaders. Default: 2.

reload_dataloaders_every_n_epochs: Set to a non-negative integer to reload
dataloaders every n epochs.

Default: 0.

replace_sampler_ddp: Explicitly enables or disables sampler replacement. If not
specified this

will toggled automatically when DDP is used. By default it will add shuffle=True
for train sampler and shuffle=False for val/test sampler. If you want to customize
it, you can set replace_sampler_ddp=False and add your own distributed sam-
pler.

resume_from_checkpoint: Path/URL of the checkpoint from which training is
resumed. If there is

no checkpoint file at the path, an exception is raised. If resuming from mid-epoch
checkpoint, training will start from the beginning of the next epoch.

Deprecated since version v1.5: resume_from_checkpoint is deprecated in v1.5
and will be removed in v2.0. Please pass the path to Trainer.fit(...,
ckpt_path=...) instead.

4.4. Trainers 71

collie, Release 1.3.1

strategy: Supports different training strategies with aliases
as well custom strategies. Default: None.

sync_batchnorm: Synchronize batch norm layers between process groups/whole
world.

Default: False.

tpu_cores: How many TPU cores to train on (1 or 8) / Single TPU to train on (1)
Default: None.

Deprecated since version v1.7: tpu_cores has been deprecated in v1.7 and will be
removed in v2.0. Please use accelerator='tpu' and devices=x instead.

ipus: How many IPUs to train on.
Default: None.

Deprecated since version v1.7: ipus has been deprecated in v1.7 and will be removed
in v2.0. Please use accelerator='ipu' and devices=x instead.

track_grad_norm: -1 no tracking. Otherwise tracks that p-norm. May be set to
‘inf’ infinity-norm. If using

Automatic Mixed Precision (AMP), the gradients will be unscaled before logging
them. Default: -1.

val_check_interval: How often to check the validation set. Pass a float in the
range [0.0, 1.0] to check

after a fraction of the training epoch. Pass an int to check after a fixed number
of training batches. An int value can only be higher than the number of train-
ing batches when check_val_every_n_epoch=None, which validates after every
N training batches across epochs or during iteration-based training. Default: 1.0.

enable_model_summary: Whether to enable model summarization by default.
Default: True.

move_metrics_to_cpu: Whether to force internal logged metrics to be moved to
cpu.

This can save some gpu memory, but can make training slower. Use with attention.
Default: False.

multiple_trainloader_mode: How to loop over the datasets when there are
multiple train loaders.

In ‘max_size_cycle’ mode, the trainer ends one epoch when the largest dataset is
traversed, and smaller datasets reload when running out of their data. In ‘min_size’
mode, all the datasets reload when reaching the minimum length of datasets. Default:
"max_size_cycle".

inference_mode: Whether to use torch.inference_mode() or
torch.no_grad() during

evaluation (validate/test/predict).

property checkpoint_callback: Optional[Checkpoint]

The first ModelCheckpoint callback in the Trainer.callbacks list, or None if it doesn’t exist.

property checkpoint_callbacks: List[Checkpoint]

A list of all instances of ModelCheckpoint found in the Trainer.callbacks list.

property ckpt_path: Optional[str]

Set to the path/URL of a checkpoint loaded via fit(), validate(), test(), or predict(). None oth-
erwise.

property current_epoch: int

The current epoch, updated after the epoch end hooks are run.

72 Chapter 4. Models

collie, Release 1.3.1

property default_root_dir: str

The default location to save artifacts of loggers, checkpoints etc.

It is used as a fallback if logger or checkpoint callback do not define specific save paths.

property device_ids: List[int]

List of device indexes per node.

property early_stopping_callback: Optional[EarlyStopping]

The first EarlyStopping callback in the Trainer.callbacks list, or None if it doesn’t exist.

property early_stopping_callbacks: List[EarlyStopping]

A list of all instances of EarlyStopping found in the Trainer.callbacks list.

property enable_validation: bool

Check if we should run validation during training.

property estimated_stepping_batches: Union[int, float]

Estimated stepping batches for the complete training inferred from DataLoaders, gradient accumulation
factor and distributed setup.

Examples:

def configure_optimizers(self):
optimizer = ...
scheduler = torch.optim.lr_scheduler.OneCycleLR(

optimizer, max_lr=1e-3, total_steps=self.trainer.estimated_stepping_
→˓batches

)
return [optimizer], [scheduler]

fit(model: LightningModule, train_dataloaders: Optional[Union[DataLoader, Sequence[DataLoader],
Sequence[Sequence[DataLoader]], Sequence[Dict[str, DataLoader]], Dict[str, DataLoader], Dict[str,
Dict[str, DataLoader]], Dict[str, Sequence[DataLoader]], LightningDataModule]] = None,
val_dataloaders: Optional[Union[DataLoader, Sequence[DataLoader]]] = None, datamodule:
Optional[LightningDataModule] = None, ckpt_path: Optional[str] = None)→ None
Runs the full optimization routine.

Parameters
• model – Model to fit.

• train_dataloaders – A collection of torch.utils.data.DataLoader or a
LightningDataModule specifying training samples. In the case of multiple dataloaders,
please see this section.

• val_dataloaders – A torch.utils.data.DataLoader or a sequence of them speci-
fying validation samples.

• ckpt_path – Path/URL of the checkpoint from which training is resumed. Could also be
one of two special keywords "last" and "hpc". If there is no checkpoint file at the path,
an exception is raised. If resuming from mid-epoch checkpoint, training will start from the
beginning of the next epoch.

• datamodule – An instance of LightningDataModule.

property global_step: int

The number of optimizer steps taken (does not reset each epoch).

This includes multiple optimizers and TBPTT steps (if enabled).

4.4. Trainers 73

collie, Release 1.3.1

property is_last_batch: bool

Whether trainer is executing the last batch.

property max_epochs

Property that just returns max_epochs, included only so we can have a setter for it without an
AttributeError.

property model: Optional[Module]

The LightningModule, but possibly wrapped into DataParallel or DistributedDataParallel.

To access the pure LightningModule, use lightning_module() instead.

property num_devices: int

Number of devices the trainer uses per node.

predict(model: Optional[LightningModule] = None, dataloaders: Optional[Union[DataLoader,
Sequence[DataLoader], LightningDataModule]] = None, datamodule:
Optional[LightningDataModule] = None, return_predictions: Optional[bool] = None, ckpt_path:
Optional[str] = None)→ Optional[Union[List[Any], List[List[Any]]]]

Run inference on your data. This will call the model forward function to compute predictions. Useful to
perform distributed and batched predictions. Logging is disabled in the predict hooks.

Parameters
• model – The model to predict with.

• dataloaders – A torch.utils.data.DataLoader or a sequence of them, or a
LightningDataModule specifying prediction samples.

• datamodule – The datamodule with a predict_dataloader method that returns one or more
dataloaders.

• return_predictions – Whether to return predictions. True by default except when an
accelerator that spawns processes is used (not supported).

• ckpt_path – Either "best", "last", "hpc" or path to the checkpoint you wish to pre-
dict. If None and the model instance was passed, use the current weights. Otherwise, the
best model checkpoint from the previous trainer.fit call will be loaded if a checkpoint
callback is configured.

Returns
Returns a list of dictionaries, one for each provided dataloader containing their respective
predictions.

See Lightning inference section for more.

property prediction_writer_callbacks: List[BasePredictionWriter]

A list of all instances of BasePredictionWriter found in the Trainer.callbacks list.

property progress_bar_callback: Optional[ProgressBarBase]

An instance of ProgressBarBase found in the Trainer.callbacks list, or None if one doesn’t exist.

reset_predict_dataloader(model: Optional[LightningModule] = None)→ None
Resets the predict dataloader and determines the number of batches.

Parameters
model – The LightningModule if called outside of the trainer scope.

reset_test_dataloader(model: Optional[LightningModule] = None)→ None
Resets the test dataloader and determines the number of batches.

74 Chapter 4. Models

collie, Release 1.3.1

Parameters
model – The LightningModule if called outside of the trainer scope.

reset_train_dataloader(model: Optional[LightningModule] = None)→ None
Resets the train dataloader and initialises required variables (number of batches, when to validate, etc.).

Parameters
model – The LightningModule if calling this outside of the trainer scope.

reset_val_dataloader(model: Optional[LightningModule] = None)→ None
Resets the validation dataloader and determines the number of batches.

Parameters
model – The LightningModule if called outside of the trainer scope.

save_checkpoint(filepath: Union[str, Path], weights_only: bool = False, storage_options: Optional[Any] =
None)→ None

Runs routine to create a checkpoint.

Parameters
• filepath – Path where checkpoint is saved.

• weights_only – If True, will only save the model weights.

• storage_options – parameter for how to save to storage, passed to CheckpointIO plu-
gin

test(model: Optional[LightningModule] = None, dataloaders: Optional[Union[DataLoader,
Sequence[DataLoader], LightningDataModule]] = None, ckpt_path: Optional[str] = None, verbose:
bool = True, datamodule: Optional[LightningDataModule] = None)→ List[Dict[str, float]]

Perform one evaluation epoch over the test set. It’s separated from fit to make sure you never run on your
test set until you want to.

Parameters
• model – The model to test.

• dataloaders – A torch.utils.data.DataLoader or a sequence of them, or a
LightningDataModule specifying test samples.

• ckpt_path – Either "best", "last", "hpc" or path to the checkpoint you wish to test.
If None and the model instance was passed, use the current weights. Otherwise, the best
model checkpoint from the previous trainer.fit call will be loaded if a checkpoint call-
back is configured.

• verbose – If True, prints the test results.

• datamodule – An instance of LightningDataModule.

Returns
List of dictionaries with metrics logged during the test phase, e.g., in model- or callback
hooks like test_step(), test_epoch_end(), etc. The length of the list corresponds to the
number of test dataloaders used.

tune(model: LightningModule, train_dataloaders: Optional[Union[DataLoader, Sequence[DataLoader],
Sequence[Sequence[DataLoader]], Sequence[Dict[str, DataLoader]], Dict[str, DataLoader], Dict[str,
Dict[str, DataLoader]], Dict[str, Sequence[DataLoader]], LightningDataModule]] = None,
val_dataloaders: Optional[Union[DataLoader, Sequence[DataLoader]]] = None, dataloaders:
Optional[Union[DataLoader, Sequence[DataLoader]]] = None, datamodule:
Optional[LightningDataModule] = None, scale_batch_size_kwargs: Optional[Dict[str, Any]] = None,
lr_find_kwargs: Optional[Dict[str, Any]] = None, method: Literal['fit', 'validate', 'test', 'predict'] = 'fit')
→ _TunerResult

4.4. Trainers 75

collie, Release 1.3.1

Runs routines to tune hyperparameters before training.

Parameters
• model – Model to tune.

• train_dataloaders – A collection of torch.utils.data.DataLoader or a
LightningDataModule specifying training samples. In the case of multiple dataloaders,
please see this section.

• val_dataloaders – A torch.utils.data.DataLoader or a sequence of them speci-
fying validation samples.

• dataloaders – A torch.utils.data.DataLoader or a sequence of them specifying
val/test/predict samples used for running tuner on validation/testing/prediction.

• datamodule – An instance of LightningDataModule.

• scale_batch_size_kwargs – Arguments for scale_batch_size()

• lr_find_kwargs – Arguments for lr_find()

• method – Method to run tuner on. It can be any of ("fit", "validate", "test",
"predict").

validate(model: Optional[LightningModule] = None, dataloaders: Optional[Union[DataLoader,
Sequence[DataLoader], LightningDataModule]] = None, ckpt_path: Optional[str] = None,
verbose: bool = True, datamodule: Optional[LightningDataModule] = None)→ List[Dict[str,
float]]

Perform one evaluation epoch over the validation set.

Parameters
• model – The model to validate.

• dataloaders – A torch.utils.data.DataLoader or a sequence of them, or a
LightningDataModule specifying validation samples.

• ckpt_path – Either "best", "last", "hpc" or path to the checkpoint you wish to vali-
date. If None and the model instance was passed, use the current weights. Otherwise, the
best model checkpoint from the previous trainer.fit call will be loaded if a checkpoint
callback is configured.

• verbose – If True, prints the validation results.

• datamodule – An instance of LightningDataModule.

Returns
List of dictionaries with metrics logged during the validation phase, e.g., in model- or callback
hooks like validation_step(), validation_epoch_end(), etc. The length of the list
corresponds to the number of validation dataloaders used.

76 Chapter 4. Models

collie, Release 1.3.1

4.4.2 Non- PyTorch Lightning Trainer

class collie.model.CollieMinimalTrainer(model: BasePipeline, max_epochs: int = 10, gpus:
Optional[Union[bool, int]] = None, logger: Optional[Logger] =
None, early_stopping_patience: Optional[int] = 3,
log_every_n_steps: int = 50, flush_logs_every_n_steps: int =
100, enable_model_summary: bool = True, weights_summary:
Optional[str] = None, detect_anomaly: bool = False,
terminate_on_nan: Optional[bool] = None, benchmark: bool =
True, deterministic: bool = True, progress_bar_refresh_rate:
Optional[int] = None, verbosity: Union[bool, int] = True)

A more manual implementation of PyTorch Lightning’s Trainer class, attempting to port over the most com-
monly used Trainer arguments into a training loop with more transparency and faster training times.

Through extensive experimentation, we found that PyTorch Lightning’s Trainer was training Collie mod-
els about 25% slower than the more manual, typical PyTorch training loop boilerplate. Thus, we created the
CollieMinimalTrainer, which shares a similar API to PyTorch Lightning’s Trainer object (both in instan-
tiation and in usage), with a standard PyTorch training loop in its place.

While PyTorch Lightning’s Trainer offers more flexibility and customization through the addition of the ad-
ditional Trainer arguments and callbacks, we designed this class as a way to train a model in production,
where we might be more focused on faster training times and less on hyperparameter tuning and R&D, where
one might instead opt to use PyTorch Lightning’s Trainer class.

Note that the arguments the CollieMinimalTrainer trainer accepts will be slightly different than the ones that
the CollieTrainer accept, and defaults are also not guaranteed to be equal as the two libraries evolve. Notable
changes are:

• If gpus > 1, only a single GPU will be used and any other GPUs will remain unused. Multi- GPU training
is not supported in CollieMinimalTrainer at this time.

• logger == True has no meaning in CollieMinimalTrainer - a default logger will NOT be created if
set to True.

• There is no way to pass in callbacks at this time. Instead, we will implement the most used ones dur-
ing training here, manually, in favor of greater speed over customization. To use early stopping, set the
early_stopping_patience to an integer other than None.

from collie.model import CollieMinimalTrainer, MatrixFactorizationModel

notice how similar the usage is to the standard ``CollieTrainer``
model = MatrixFactorizationModel(train=train)
trainer = CollieMinimalTrainer(model)
trainer.fit(model)

Model results should NOT be significantly different whether trained with CollieTrainer or
CollieMinimalTrainer.

If there’s an argument you would like to see added to CollieMinimalTrainer that is present in
CollieTrainer used during productionalized model training, make an Issue or a PR in GitHub!

Parameters
• model (collie.model.BasePipeline) – Initialized Collie model

• max_epochs (int) – Stop training once this number of epochs is reached

4.4. Trainers 77

collie, Release 1.3.1

• gpus (bool or int) – Whether to train on the GPU (gpus == True or gpus > 0) or the
CPU

• logger (LightningLoggerBase) – Logger for experiment tracking. Set logger = None
or logger = False to disable logging

• early_stopping_patience (int) – Number of epochs of patience to have without any
improvement in loss before stopping training early. Validation epoch loss will be used
if there is a validation DataLoader present, else training epoch loss will be used. Set
early_stopping_patience = None or early_stopping_patience = False to dis-
able early stopping

• log_every_n_steps (int) – How often to log within steps, if logger is enabled

• flush_logs_every_n_steps (int) – How often to flush logs to disk, if logger is enabled

• enable_model_summary (bool) – Whether to enable or disable the model summarization

• weights_summary (str) – Deprecated, replaced with enable_model_summary. Prints
summary of the weights when training begins

• detect_anomaly (bool) – Context-manager that enable anomaly detection for the autograd
engine. This does two things:

– Running the forward pass with detection enabled will allow the backward pass to print the
traceback of the forward operation that created the failing backward function.

– Any backward computation that generate “nan” value will raise an error.

Warning: This mode should be enabled only for debugging as the different tests will slow
down your program execution.

• terminate_on_nan (bool) – Deprecated, replaced with detect_anomaly. If set to True,
will terminate training (by raising a ValueError) at the end of each training batch, if any of
the parameters or the loss are NaN or +/- infinity

• benchmark (bool) – If set to True, enables cudnn.benchmark

• deterministic (bool) – If set to True, enables cudnn.deterministic

• progress_bar_refresh_rate (int) – How often to refresh progress bar (in steps), if
verbosity > 0

• verbosity (Union[bool, int]) – How verbose to be in training.

– 0 disables all printouts, including weights_summary

– 1 prints weights_summary (if applicable) and epoch losses

– 2 prints weights_summary (if applicable), epoch losses, and progress bars

fit(model: BasePipeline)→ None
Runs the full optimization routine.

Parameters
model (collie.model.BasePipeline) – Initialized Collie model

property max_epochs

Property that just returns max_epochs, included only so we can have a setter for it without an
AttributeError.

78 Chapter 4. Models

collie, Release 1.3.1

4.5 Model Templates

4.5.1 Base Collie Pipeline Template

class collie.model.BasePipeline(train:
Optional[Union[ApproximateNegativeSamplingInteractionsDataLoader,
ExplicitInteractions, Interactions, InteractionsDataLoader]] = None, val:
Optional[Union[ApproximateNegativeSamplingInteractionsDataLoader,
ExplicitInteractions, Interactions, InteractionsDataLoader]] = None, lr:
float = 0.001, lr_scheduler_func: Optional[_LRScheduler] = None,
weight_decay: float = 0.0, optimizer: Union[str, Optimizer] = 'adam', loss:
Union[str, Callable[[...], tensor]] = 'hinge', metadata_for_loss:
Optional[Dict[str, tensor]] = None, metadata_for_loss_weights:
Optional[Dict[str, float]] = None, load_model_path: Optional[str] =
None, map_location: Optional[str] = None, **kwargs)

Bases: LightningModule

Base Pipeline model architectures to inherit from.

All subclasses MUST at least override the following methods:

• _setup_model - Set up the model architecture

• forward - Forward pass through a model

For item_item_similarity to work properly, all subclasses are should also implement:

• _get_item_embeddings - Returns item embeddings from the model on the device

For user_user_similarity to work properly, all subclasses are should also implement:

• _get_user_embeddings - Returns user embeddings from the model on the device

Parameters
• train (collie.interactions object) – Data loader for training data. If an
Interactions object is supplied, an InteractionsDataLoader will automatically be
instantiated with shuffle=True

• val (collie.interactions object) – Data loader for validation data. If an Interactions
object is supplied, an InteractionsDataLoader will automatically be instantiated with
shuffle=False

• lr (float) – Model learning rate

• lr_scheduler_func (torch.optim.lr_scheduler) – Learning rate scheduler to use
during fitting

• weight_decay (float) – Weight decay passed to the optimizer, if optimizer permits

• optimizer (torch.optim or str) – If a string, one of the following supported optimiz-
ers:

– 'sgd' (for torch.optim.SGD)

– 'adagrad' (for torch.optim.Adagrad)

– 'adam' (for torch.optim.Adam)

– 'sparse_adam' (for torch.optim.SparseAdam)

• loss (function or str) – If a string, one of the following implemented losses:

4.5. Model Templates 79

collie, Release 1.3.1

– 'bpr' / 'adaptive_bpr' (implicit data)

– 'hinge' / 'adaptive_hinge' (implicit data)

– 'warp' (implicit data)

– 'mse' (explicit data)

– 'mae' (explicit data)

For implicit data, if train.num_negative_samples > 1, the adaptive loss version will
automatically be used of the losses above (except for WARP loss, which is only adaptive by
nature).

If a callable is passed, that function will be used for calculating the loss. For implicit mod-
els, the first two arguments passed will be the positive and negative predictions, respec-
tively. Additional keyword arguments passed in order are num_items, positive_items,
negative_items, metadata, and metadata_weights. For explicit models, the only two
arguments passed in will be the prediction and actual rating values, in order.

• metadata_for_loss (dict) – Keys should be strings identifying each metadata type
that match keys in metadata_weights. Values should be a torch.tensor of shape
(num_items x 1). Each tensor should contain categorical metadata information about items
(e.g. a number representing the genre of the item)

• metadata_for_loss_weights (dict) – Keys should be strings identifying each meta-
data type that match keys in metadata. Values should be the amount of weight to
place on a match of that type of metadata, with the sum of all values <= 1. e.g. If
metadata_for_loss_weights = {'genre': .3, 'director': .2}, then an item
is:

– a 100% match if it’s the same item,

– a 50% match if it’s a different item with the same genre and same director,

– a 30% match if it’s a different item with the same genre and different director,

– a 20% match if it’s a different item with a different genre and same director,

– a 0% match if it’s a different item with a different genre and different director, which is
equivalent to the loss without any partial credit

• load_model_path (str or Path) – To load a previously-saved model for inference, pass
in path to output of model.save_model() method. Note that datasets and optimizers will
NOT be restored. If None, will initialize model as normal

• map_location (str or torch.device) – If load_model_path is provided, device
specifying how to remap storage locations when torch.load-ing the state dictionary

• **kwargs (keyword arguments) – All keyword arguments will be saved to self.
hparams by default

calculate_loss(batch: Union[Tuple[Tuple[tensor, tensor], tensor], Tuple[tensor, tensor, tensor]])→ tensor
Given a batch of data, calculate the loss value.

Note that the data type (implicit or explicit) will be determined by the structure of the batch sent to this
method. See the table below for expected data types:

__getitem__ Format Expected Meaning Model Type
((X, Y), Z) ((user IDs, item IDs), negative item IDs) Implicit
(X, Y, Z) (user IDs, item IDs, ratings) Explicit

80 Chapter 4. Models

collie, Release 1.3.1

configure_optimizers()→ Union[Tuple[List[Optimizer], List[Optimizer]], Tuple[Optimizer, Optimizer],
Optimizer]

Configure optimizers and learning rate schedulers to use in optimization.

This method will be called after setup.

If self.bias_optimizer is None, only a single optimizer will be returned. If there is a non-None class
attribute for bias_optimizer, two optimizers will be created: one for all layers with the name ‘bias’ in
them, and another for all other model parameters. The bias optimizer will be set with the same parameters
as optimizer with the exception of the learning rate, which will be set to self.hparams.bias_lr.

abstract forward(users: tensor, items: tensor)→ tensor
forward should be implemented in all subclasses.

get_item_predictions(user_id: int = 0, unseen_items_only: bool = False, sort_values: bool = True)→
Series

Get predicted rankings/ratings for all items for a given user_id.

This method cannot be called for datasets stored in HDF5InteractionsDataLoader since data in this
DataLoader is read in dynamically.

Parameters
• user_id (int) –

• unseen_items_only (bool) – Filter preds to only show predictions of unseen items not
present in the training or validation datasets for that user_id. Note this requires both
train_loader and val_loader to be 1) class-level attributes in the model and 2) Dat-
aLoaders with Interactions at its core (not HDF5Interactions). If you are loading in
a model, these two attributes will need to be set manually, since datasets are NOT saved
when saving the model

• sort_values (bool) – Whether to sort recommendations by descending prediction prob-
ability or not

Returns
preds – Sorted values as predicted ratings for each item in the dataset with the index being
the item ID

Return type
pd.Series

get_user_predictions(item_id: int = 0, unseen_users_only: bool = False, sort_values: bool = True)→
Series

User counterpart to get_item_predictions method.

Get predicted rankings/ratings for all users for a given item_id.

This method cannot be called for datasets stored in HDF5InteractionsDataLoader since data in this
DataLoader is read in dynamically.

Parameters
• item_id (int) –

• unseen_users_only (bool) – Filter preds to only show predictions of unseen users not
present in the training or validation datasets for that item_id. Note this requires both
train_loader and val_loader to be 1) class-level attributes in the model and 2) Dat-
aLoaders with Interactions at its core (not HDF5Interactions). If you are loading in
a model, these two attributes will need to be set manually, since datasets are NOT saved
when saving the model

4.5. Model Templates 81

collie, Release 1.3.1

• sort_values (bool) – Whether to sort recommendations by descending prediction prob-
ability

Returns
preds – Sorted values as predicted ratings for each user in the dataset with the index being
the user ID

Return type
pd.Series

item_item_similarity(item_id: int)→ Series
Get most similar item indices by cosine similarity.

Cosine similarity is computed with item embeddings from a trained model.

Parameters
item_id (int) –

Returns
sim_score_idxs – Sorted values as cosine similarity for each item in the dataset with the index
being the item ID

Return type
pd.Series

Note: Returned array is unfiltered, so the first element, being the most similar item, will always be the
item itself.

on_fit_start()→ None
Method that runs at the very beginning of the fit process.

This method will be called after configure_optimizers.

save_model(filename: Union[str, Path] = 'model.pth')→ None
Save the model’s state dictionary and hyperparameters.

While PyTorch Lightning offers a way to save and load models, there are two main reasons for overriding
these:

1) We only want to save the underlying PyTorch model (and not the Trainer object) so we don’t have to
require PyTorch Lightning as a dependency when deploying a model.

2) In the v0.8.4 release, loading a model back in leads to a RuntimeError unable to load in weights.

Parameters
filepath (str or Path) – Filepath for state dictionary to be saved at ending in ‘.pth’

train_dataloader()→ Union[ApproximateNegativeSamplingInteractionsDataLoader,
InteractionsDataLoader]

Method that sets up training data as a PyTorch DataLoader.

This method will be called after on_fit_start.

training_epoch_end(outputs: Union[List[float], List[List[float]]])→ None
Method that contains a callback for logic to run after the training epoch ends.

This method will be called after training_step.

82 Chapter 4. Models

collie, Release 1.3.1

training_step(batch: Tuple[Tuple[tensor, tensor], tensor], batch_idx: int, optimizer_idx: Optional[int] =
None)→ tensor

Method that contains logic for what happens inside the training loop.

This method will be called after train_dataloader.

user_user_similarity(user_id: int)→ Series
User counterpart to item_item_similarity method.

Get most similar user indices by cosine similarity.

Cosine similarity is computed with user embeddings from a trained model.

Parameters
user_id (int) –

Returns
sim_score_idxs – Sorted values as cosine similarity for each user in the dataset with the index
being the user ID

Return type
pd.Series

Note: Returned array is unfiltered, so the first element, being the most similar user, will always be the seed
user themself.

val_dataloader()→ Union[ApproximateNegativeSamplingInteractionsDataLoader,
InteractionsDataLoader]

Method that sets up validation data as a PyTorch DataLoader.

This method will be called after training_step.

validation_epoch_end(outputs: List[float])→ None
Method that contains a callback for logic to run after the validation epoch ends.

This method will be called after validation_step.

validation_step(batch: Tuple[Tuple[tensor, tensor], tensor], batch_idx: int, optimizer_idx: Optional[int]
= None)→ tensor

Method that contains logic for what happens inside the validation loop.

This method will be called after val_dataloader.

4.5.2 Base Collie Multi-Stage Pipeline Template

class collie.model.MultiStagePipeline(train: Op-
tional[Union[ApproximateNegativeSamplingInteractionsDataLoader,
Interactions, InteractionsDataLoader]] = None, val: Op-
tional[Union[ApproximateNegativeSamplingInteractionsDataLoader,
Interactions, InteractionsDataLoader]] = None, lr_scheduler_func:
Optional[_LRScheduler] = None, weight_decay: float = 0.0,
optimizer_config_list: Optional[List[Dict[str, Union[float,
List[str], str]]]] = None, loss: Union[str, Callable[[...], tensor]] =
'hinge', metadata_for_loss: Optional[Dict[str, tensor]] = None,
metadata_for_loss_weights: Optional[Dict[str, float]] = None,
load_model_path: Optional[str] = None, map_location:
Optional[str] = None, **kwargs)

4.5. Model Templates 83

collie, Release 1.3.1

Bases: BasePipeline

Multi-stage pipeline model architectures to inherit from.

This model template is intended for models that train in distinct stages, with a different optimizer optimizing
each step. This allows model components to be optimized with a set order in mind, rather than all at once, such
as with the BasePipeline.

Generally, multi-stage models will have a training protocol like:

from collie.model import CollieTrainer, SomeMultiStageModel

model = SomeMultiStageModel(train=train)
trainer = CollieTrainer(model)

fit stage 1
trainer.fit(model)

fit stage 2
trainer.max_epochs += 10
model.advance_stage()
trainer.fit(model)

fit stage 3
trainer.max_epochs += 10
model.advance_stage()
trainer.fit(model)

... and so on, until...

model.eval()

Just like with BasePipeline, all subclasses MUST at least override the following methods:

• _setup_model - Set up the model architecture

• forward - Forward pass through a model

For item_item_similarity to work properly, all subclasses are should also implement:

• _get_item_embeddings - Returns item embeddings from the model

Parameters
• train (collie.interactions object) – Data loader for training data. If an
Interactions object is supplied, an InteractionsDataLoader will automatically be
instantiated with shuffle=True

• val (collie.interactions object) – Data loader for validation data. If an Interactions
object is supplied, an InteractionsDataLoader will automatically be instantiated with
shuffle=False

• lr_scheduler_func (torch.optim.lr_scheduler) – Learning rate scheduler to use
during fitting

• weight_decay (float) – Weight decay passed to the optimizer, if optimizer permits

• optimizer_config_list (list of dict) – List of dictionaries containing the optimizer
configurations for each stage’s optimizer(s). Each dictionary must contain the following keys:

84 Chapter 4. Models

collie, Release 1.3.1

– lr: str
Learning rate for the optimizer

– optimizer: torch.optim or str

– parameter_prefix_list: List[str]
List of string prefixes corressponding to the model components that should be optimized
with this optimizer

– stage: str
Name of stage

This must be ordered with the intended progression of stages.

• loss (function or str) – If a string, one of the following implemented losses:

– 'bpr' / 'adaptive_bpr' (implicit data)

– 'hinge' / 'adaptive_hinge' (implicit data)

– 'warp' (implicit data)

– 'mse' (explicit data)

– 'mae' (explicit data)

For implicit data, if train.num_negative_samples > 1, the adaptive loss version will
automatically be used of the losses above (except for WARP loss, which is only adaptive by
nature).

If a callable is passed, that function will be used for calculating the loss. For implicit mod-
els, the first two arguments passed will be the positive and negative predictions, respec-
tively. Additional keyword arguments passed in order are num_items, positive_items,
negative_items, metadata, and metadata_weights. For explicit models, the only two
arguments passed in will be the prediction and actual rating values, in order.

• metadata_for_loss (dict) – Keys should be strings identifying each metadata type
that match keys in metadata_weights. Values should be a torch.tensor of shape
(num_items x 1). Each tensor should contain categorical metadata information about items
(e.g. a number representing the genre of the item)

• metadata_for_loss_weights (dict) – Keys should be strings identifying each meta-
data type that match keys in metadata. Values should be the amount of weight to
place on a match of that type of metadata, with the sum of all values <= 1. e.g. If
metadata_for_loss_weights = {'genre': .3, 'director': .2}, then an item
is:

– a 100% match if it’s the same item,

– a 50% match if it’s a different item with the same genre and same director,

– a 30% match if it’s a different item with the same genre and different director,

– a 20% match if it’s a different item with a different genre and same director,

– a 0% match if it’s a different item with a different genre and different director, which is
equivalent to the loss without any partial credit

• load_model_path (str or Path) – To load a previously-saved model for inference, pass
in path to output of model.save_model() method. Note that datasets and optimizers will
NOT be restored. If None, will initialize model as normal

• map_location (str or torch.device) – If load_model_path is provided, device
specifying how to remap storage locations when torch.load-ing the state dictionary

4.5. Model Templates 85

collie, Release 1.3.1

• **kwargs (keyword arguments) – All keyword arguments will be saved to self.
hparams by default

Notes

• With each call of trainer.fit, the optimizer and learning rate scheduler state will reset.

• When loading a multi-stage model in, the state will be set to the last possible state. This state may have a
different forward calculation than other states.

advance_stage()→ None
Advance the stage to the next one in self.hparams.stage_list.

configure_optimizers()→ Union[Tuple[List[Optimizer], List[Optimizer]], Tuple[Optimizer, Optimizer],
Optimizer]

Configure optimizers and learning rate schedulers to use in optimization.

This method will be called after setup.

Creates an optimizer and learning rate scheduler for each configuration dictionary in self.hparams.
optimizer_config_list.

optimizer_step(epoch: Optional[int] = None, batch_idx: Optional[int] = None, optimizer:
Optional[Optimizer] = None, optimizer_idx: Optional[int] = None, optimizer_closure:
Optional[Callable[[...], Any]] = None, **kwargs)→ None

Overriding Lightning’s optimizer step function to only step the optimizer associated with the relevant stage.

See here for more details: https://pytorch-lightning.readthedocs.io/en/stable/common/lightning_module.
html#optimizer-step

Parameters
• epoch (int) – Current epoch

• batch_idx (int) – Index of current batch

• optimizer (torch.optim.Optimizer) – A PyTorch optimizer

• optimizer_idx (int) – If you used multiple optimizers, this indexes into that list

• optimizer_closure (Callable) – Closure for all optimizers

set_stage(stage: str)→ None
Set the model to the desired stage.

4.6 Layers

4.6.1 Scaled Embedding

class collie.model.ScaledEmbedding(num_embeddings: int, embedding_dim: int, padding_idx:
Optional[int] = None, max_norm: Optional[float] = None, norm_type:
float = 2.0, scale_grad_by_freq: bool = False, sparse: bool = False,
_weight: Optional[Tensor] = None, device=None, dtype=None)

Bases: Embedding

Embedding layer that initializes its values to use a truncated normal distribution.

86 Chapter 4. Models

https://pytorch-lightning.readthedocs.io/en/stable/common/lightning_module.html#optimizer-step
https://pytorch-lightning.readthedocs.io/en/stable/common/lightning_module.html#optimizer-step

collie, Release 1.3.1

reset_parameters()→ None
Overriding default reset_parameters method.

4.6.2 Zero Embedding

class collie.model.ZeroEmbedding(num_embeddings: int, embedding_dim: int, padding_idx: Optional[int]
= None, max_norm: Optional[float] = None, norm_type: float = 2.0,
scale_grad_by_freq: bool = False, sparse: bool = False, _weight:
Optional[Tensor] = None, device=None, dtype=None)

Bases: Embedding

Embedding layer with weights zeroed-out.

reset_parameters()→ None
Overriding default reset_parameters method.

4.6. Layers 87

collie, Release 1.3.1

88 Chapter 4. Models

CHAPTER

FIVE

EVALUATION METRICS

The Collie library supports evaluating both implicit and explicit models.

Three common implicit recommendation evaluation metrics come out-of-the-box with Collie. These include Area
Under the ROC Curve (AUC), Mean Reciprocal Rank (MRR), and Mean Average Precision at K (MAP@K). Each
metric is optimized to be as efficient as possible by having all calculations done in batch, tensor form on the GPU (if
available). We provide a standard helper function, evaluate_in_batches, to evaluate a model on many metrics in a
single pass.

Explicit evaluation of recommendation systems is luckily much more straightforward, allowing us to utilize the Torch-
Metrics library for flexible, optimized metric calculations on the GPU accessed through a standard helper function,
explicit_evaluate_in_batches, whose API is very similar to its implicit counterpart.

5.1 Evaluate in Batches

5.1.1 Implicit Evaluate in Batches

collie.metrics.evaluate_in_batches(metric_list: Iterable[Callable[[csr_matrix, Union[array, tensor],
Union[array, tensor], Optional[int]], float]], test_interactions:
Interactions, model: BasePipeline, k: int = 10, batch_size: int = 20,
logger: Optional[Logger] = None, verbose: bool = True)→ List[float]

Evaluate a model with potentially several different metrics.

Memory constraints require that most test sets will need to be evaluated in batches. This function handles the
looping and batching boilerplate needed to properly evaluate the model without running out of memory.

Parameters
• metric_list (list of functions) – List of evaluation functions to apply. Each func-

tion must accept keyword arguments:

– targets

– user_ids

– preds

– k

• test_interactions (collie.interactions.Interactions) – Interactions to use as
labels

• model (collie.model.BasePipeline) – Model that can take a (user_id, item_id) pair as
input and return a recommendation score

• k (int) – Number of recommendations to consider per user. This is ignored by some metrics

89

https://torchmetrics.readthedocs.io/en/latest/
https://torchmetrics.readthedocs.io/en/latest/

collie, Release 1.3.1

• batch_size (int) – Number of users to score in a single batch. For best efficiency, this
number should be as high as possible without running out of memory

• logger (pytorch_lightning.loggers.base.LightningLoggerBase) – If provided,
will log outputted metrics dictionary using the log_metrics method with keys being the
string representation of metric_list and values being evaluation_results. Addition-
ally, if model.hparams.num_epochs_completed exists, this will be logged as well, mak-
ing it possible to track metrics progress over the course of model training

• verbose (bool) – Display progress bar and print statements during function execution

Returns
evaluation_results – List of floats, with each metric value corresponding to the respective func-
tion passed in metric_list

Return type
list

Examples

from collie.metrics import auc, evaluate_in_batches, mapk, mrr

map_10_score, mrr_score, auc_score = evaluate_in_batches(
metric_list=[mapk, mrr, auc],
test_interactions=test,
model=model,

)

print(map_10_score, mrr_score, auc_score)

5.1.2 Explicit Evaluate in Batches

collie.metrics.explicit_evaluate_in_batches(metric_list: Iterable[Metric], test_interactions:
ExplicitInteractions, model: BasePipeline, logger:
Optional[Logger] = None, verbose: bool = True,
**kwargs)→ List[float]

Evaluate a model with potentially several different metrics.

Memory constraints require that most test sets will need to be evaluated in batches. This function handles the
looping and batching boilerplate needed to properly evaluate the model without running out of memory.

Parameters
• metric_list (list of torchmetrics.Metric) – List of evaluation functions to apply. Each

function must accept arguments for predictions and targets, in order

• test_interactions (collie.interactions.ExplicitInteractions) –

• model (collie.model.BasePipeline) – Model that can take a (user_id, item_id) pair as
input and return a recommendation score

• batch_size (int) – Number of users to score in a single batch. For best efficiency, this
number should be as high as possible without running out of memory

• logger (pytorch_lightning.loggers.base.LightningLoggerBase) – If provided,
will log outputted metrics dictionary using the log_metrics method with keys being the

90 Chapter 5. Evaluation Metrics

collie, Release 1.3.1

string representation of metric_list and values being evaluation_results. Addition-
ally, if model.hparams.num_epochs_completed exists, this will be logged as well, mak-
ing it possible to track metrics progress over the course of model training

• verbose (bool) – Display progress bar and print statements during function execution

• **kwargs (keyword arguments) – Additional arguments sent to the
InteractionsDataLoader

Returns
evaluation_results – List of floats, with each metric value corresponding to the respective func-
tion passed in metric_list

Return type
list

Examples

import torchmetrics

from collie.metrics import explicit_evaluate_in_batches

mse_score, mae_score = evaluate_in_batches(
metric_list=[torchmetrics.MeanSquaredError(), torchmetrics.MeanAbsoluteError()],
test_interactions=test,
model=model,

)

print(mse_score, mae_score)

5.2 Implicit Metrics

5.2.1 AUC

collie.metrics.auc(targets: csr_matrix, user_ids: Union[array, tensor], preds: Union[array, tensor], k:
Optional[Any] = None)→ float

Calculate the area under the ROC curve (AUC) for each user and average the results.

Parameters
• targets (scipy.sparse.csr_matrix) – Interaction matrix containing user and item IDs

• user_ids (np.array or torch.tensor) – Users corresponding to the recommendations
in the top k predictions

• preds (torch.tensor) – Tensor of shape (n_users x n_items) with each user’s scores for
each item

• k (Any) – Ignored, included only for compatibility with mapk

Returns
auc_score

Return type
float

5.2. Implicit Metrics 91

collie, Release 1.3.1

5.2.2 MAP@K

collie.metrics.mapk(targets: csr_matrix, user_ids: Union[array, tensor], preds: Union[array, tensor], k: int =
10)→ float

Calculate the mean average precision at K (MAP@K) score for each user.

Parameters
• targets (scipy.sparse.csr_matrix) – Interaction matrix containing user and item IDs

• user_ids (np.array or torch.tensor) – Users corresponding to the recommendations
in the top k predictions

• preds (torch.tensor) – Tensor of shape (n_users x n_items) with each user’s scores for
each item

• k (int) – Number of recommendations to consider per user

Returns
mapk_score

Return type
float

5.2.3 MRR

collie.metrics.mrr(targets: csr_matrix, user_ids: Union[array, tensor], preds: Union[array, tensor], k:
Optional[Any] = None)→ float

Calculate the mean reciprocal rank (MRR) of the input predictions.

Parameters
• targets (scipy.sparse.csr_matrix) – Interaction matrix containing user and item IDs

• user_ids (np.array or torch.tensor) – Users corresponding to the recommendations
in the top k predictions

• preds (torch.tensor) – Tensor of shape (n_users x n_items) with each user’s scores for
each item

• k (Any) – Ignored, included only for compatibility with mapk

Returns
mrr_score

Return type
float

92 Chapter 5. Evaluation Metrics

CHAPTER

SIX

UTILITY FUNCTIONS

6.1 Create Ratings Matrix

class collie.utils.create_ratings_matrix(df: DataFrame, user_col: str = 'user_id', item_col: str =
'item_id', ratings_col: str = 'rating', sparse: bool = False)

Helper function to convert a Pandas DataFrame to 2-dimensional matrix.

Parameters
• df (pd.DataFrame) – Dataframe with columns for user IDs, item IDs, and ratings

• user_col (str) – Column name for the user IDs

• item_col (str) – Column name for the item IDs

• ratings_col (str) – Column name for the ratings column

• sparse (bool) – Whether to return data as a sparse coo_matrix (True) or np.array (False)

Returns
ratings_matrix – Data with users as rows, items as columns, and ratings as values

Return type
np.array or scipy.sparse.coo_matrix, 2-d

6.2 DataFrame to Interactions

class collie.utils.df_to_interactions(df: DataFrame, user_col: str = 'user_id', item_col: str = 'item_id',
ratings_col: Optional[str] = 'rating', **kwargs)

Helper function to convert a DataFrame to an Interactions object.

Parameters
• df (pd.DataFrame) – Dataframe with columns for user IDs, item IDs, and (optionally)

ratings

• user_col (str) – Column name for the user IDs

• item_col (str) – Column name for the item IDs

• ratings_col (str) – Column name for the ratings column. If None, will default to ratings
of all 1s

• **kwargs – Keyword arguments to pass to Interactions

93

collie, Release 1.3.1

Returns
interactions

Return type
collie.interactions.Interactions

6.3 Convert to Implicit Ratings

class collie.utils.convert_to_implicit(explicit_df: DataFrame, min_rating_to_keep: Optional[float] =
4, user_col: str = 'user_id', item_col: str = 'item_id', ratings_col:
str = 'rating')

Convert explicit interactions data to implicit data.

Duplicate user ID and item ID pairs will be dropped, as well as all scores that are < min_rating_to_keep. All
remaining interactions will have a rating of 1.

Parameters
• explicit_df (pd.DataFrame) – Dataframe with explicit ratings in the rating column

• min_rating_to_keep (int) – Minimum rating to be considered a valid interaction

• ratings_col (str) – Column name for the ratings column

Returns
implicit_df – Dataframe that converts all ratings >= min_rating_to_keep to 1 and drops
the rest with a reset index. Note that the order of implicit_dfwill not be equal to explicit_df

Return type
pd.DataFrame

6.4 Remove Users With Fewer Than n Interactions

class collie.utils.remove_users_with_fewer_than_n_interactions(df: DataFrame,
min_num_of_interactions: int = 3,
user_col: str = 'user_id')

Remove DataFrame rows with users who appear fewer than min_num_of_interactions times.

Parameters
• df (pd.DataFrame) –

• min_num_of_interactions (int) – Minimum number of interactions a user can have
while remaining in filtered_df

• user_col (str) – Column name for the user IDs

Returns
filtered_df

Return type
pd.DataFrame

94 Chapter 6. Utility Functions

collie, Release 1.3.1

6.5 Pandas DataFrame to HDF5 Format

class collie.utils.pandas_df_to_hdf5(df: DataFrame, out_path: Union[str, Path], key: str = 'interactions')
Append a Pandas DataFrame to HDF5 using a table format and blosc compression.

6.6 DataFrame to HTML

class collie.utils.df_to_html(df: DataFrame, image_cols: List[str] = [], hyperlink_cols: List[str] = [],
html_tags: Dict[str, Union[str, List[str]]] = {}, transpose: bool = False,
image_width: Optional[int] = None, max_num_rows: int = 200, **kwargs)

Convert a Pandas DataFrame to HTML.

Parameters
• df (DataFrame) – DataFrame to convert to HTML

• image_cols (str or list) – Column names that contain image urls or file paths.
Columns specified as images will make all other transformations to those columns be ig-
nored. Local files will display correctly in Jupyter if specified using relative paths but not if
specified using absolute paths (see https://github.com/jupyter/notebook/issues/3810).

• hyperlink_cols (str or list) – Column names that contain hyperlinks to open in a
new tab

• html_tags (dictionary) – A transformation to be inserted directly into the HTML tag.

Ex: {'col_name_1': 'strong'} becomes col_name_1

Ex: {'col_name_2': 'mark'} becomes <mark>col_name_2</mark>

Ex: {'col_name_3': 'h2'} becomes <h2>col_name_3</h2>

Ex: {'col_name_4': ['em', 'strong']} becomes col_name_4</
strong>

• transpose (bool) – Transpose the DataFrame before converting to HTML

• image_width (int) – Set image width for each image generated

• max_num_rows (int) – Maximum number of rows to display

• **kwargs (keyword arguments) – Additional arguments sent to pandas.DataFrame.
to_html, as listed in: https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.
DataFrame.to_html.html

Returns
df_html – DataFrame converted to a HTML string, ready for displaying

Return type
HTML

6.5. Pandas DataFrame to HDF5 Format 95

https://github.com/jupyter/notebook/issues/3810
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_html.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_html.html

collie, Release 1.3.1

Examples

In a Jupyter notebook:

from IPython.core.display import display, HTML
import pandas as pd

df = pd.DataFrame({
'item': ['Beefy Fritos® Burrito'],
'price': ['1.00'],
'image_url': ['https://www.tacobell.com/images/22480_beefy_fritos_burrito_

→˓269x269.jpg'],
})
display(

HTML(
df_to_html(

df,
image_cols='image_url',
html_tags={'item': 'strong', 'price': 'em'},
image_width=200,

)
)

)

Note: Converted table will have CSS class ‘dataframe’, unless otherwise specified.

6.7 Timer Class

class collie.utils.Timer

Class to manage timing different sections of a job.

time_since_start(message: str = 'Total time')→ float
Get time since timer was instantiated.

timecheck(message: str = 'Finished')→ float
Get time since last timecheck.

6.8 Truncated Normal Initialization

class collie.utils.trunc_normal(embedding_weight: tensor, mean: float = 0.0, std: float = 1.0)
Truncated normal initialization (approximation).

Taken from FastAI: https://github.com/fastai/fastai/blob/master/fastai/layers.py

96 Chapter 6. Utility Functions

https://github.com/fastai/fastai/blob/master/fastai/layers.py

CHAPTER

SEVEN

MOVIELENS FUNCTIONS

The following functions under collie.movielens read and prepare MovieLens 100K data, train and evaluate a model
on this data, and visualize recommendation results.

7.1 Get MovieLens 100K Data

7.1.1 Read MovieLens 100K Interactions Data

collie.movielens.read_movielens_df(decrement_ids: bool = True)→ DataFrame
Read u.data from the MovieLens 100K dataset.

If there is not a directory at $DATA_PATH/ml-100k, this function creates that directory and downloads the entire
dataset there.

See the MovieLens 100K README for additional information on the dataset: https://files.grouplens.org/
datasets/movielens/ml-100k-README.txt

Parameters
decrement_ids (bool) – Decrement user and item IDs by 1 before returning, which is required
for Collie’s Interactions dataset

Returns
df –

MovieLens 100K u.data comprising of columns:

• user_id

• item_id

• rating

• timestamp

Return type
pd.DataFrame

97

https://files.grouplens.org/datasets/movielens/ml-100k-README.txt
https://files.grouplens.org/datasets/movielens/ml-100k-README.txt

collie, Release 1.3.1

Side Effects

Creates directory at $DATA_PATH/ml-100k and downloads data files if data does not exist.

7.1.2 Read MovieLens 100K Item Data

collie.movielens.read_movielens_df_item()→ DataFrame
Read u.item from the MovieLens 100K dataset.

If there is not a directory at $DATA_PATH/ml-100k, this function creates that directory and downloads the entire
dataset there.

See the MovieLens 100K README for additional information on the dataset: https://files.grouplens.org/
datasets/movielens/ml-100k-README.txt

Returns
df_item –

MovieLens 100K u.item containing columns:

• item_id

• movie_title

• release_date

• video_release_date

• IMDb_URL

• unknown

• Action

• Adventure

• Animation

• Children

• Comedy

• Crime

• Documentary

• Drama

• Fantasy

• Film_Noir

• Horror

• Musical

• Mystery

• Romance’, ‘Sci_Fi

• Thriller

• War

• Wester

98 Chapter 7. MovieLens Functions

https://files.grouplens.org/datasets/movielens/ml-100k-README.txt
https://files.grouplens.org/datasets/movielens/ml-100k-README.txt

collie, Release 1.3.1

Return type
pd.DataFrame

Side Effects

Creates directory at $DATA_PATH/ml-100k and downloads data files if data does not exist.

7.1.3 Read MovieLens 100K Posters Data

collie.movielens.read_movielens_posters_df()→ DataFrame
Read in data containing the item ID and poster URL for visualization purposes of MovieLens 100K data.

This function will attempt to read the file at data/movielens_posters.csv if it exists and, if not, will
read the CSV from the origin GitHub repo at https://raw.githubusercontent.com/ShopRunner/collie/main/data/
movielens_posters.csv.

Returns
posters_df –

DataFrame comprising columns:

• item_id

• url

Return type
pd.DataFrame

7.1.4 Format MovieLens 100K Item Metadata Data

collie.movielens.get_movielens_metadata(df_item: Optional[DataFrame] = None)→ DataFrame
Return MovieLens 100K metadata as a DataFrame.

DataFrame returned has the following column order:

[
'genre_action', 'genre_adventure', 'genre_animation', 'genre_children', 'genre_

→˓comedy',
'genre_crime', 'genre_documentary', 'genre_drama', 'genre_fantasy', 'genre_film_

→˓noir',
'genre_horror', 'genre_musical', 'genre_mystery', 'genre_romance', 'genre_sci_fi

→˓',
'genre_thriller', 'genre_war', 'genre_western', 'genre_unknown', 'decade_unknown

→˓',
'decade_20', 'decade_30', 'decade_40', 'decade_50', 'decade_60',
'decade_70', 'decade_80', 'decade_90',

]

See the MovieLens 100K README for additional information on the dataset: https://files.grouplens.org/
datasets/movielens/ml-100k-README.txt

Parameters
df_item (pd.DataFrame) – DataFrame of MovieLens 100K u.item containing binary
columns of movie names and metadata. If None, will automatically read the output of
read_movielens_df_item()

7.1. Get MovieLens 100K Data 99

https://raw.githubusercontent.com/ShopRunner/collie/main/data/movielens_posters.csv
https://raw.githubusercontent.com/ShopRunner/collie/main/data/movielens_posters.csv
https://files.grouplens.org/datasets/movielens/ml-100k-README.txt
https://files.grouplens.org/datasets/movielens/ml-100k-README.txt

collie, Release 1.3.1

Returns
metadata_df

Return type
pd.DataFrame

7.1.5 Format MovieLens 100K User Metadata Data

collie.movielens.get_user_metadata(df_user: Optional[DataFrame] = None)→ DataFrame
Return MovieLens 100K user metadata as a DataFrame.

DataFrame returned has the following column order:

[
'age', 'gender', 'occupation_administrator', 'occupation_artist'
'occupation_doctor', 'occupation_educator', 'occupation_engineer'
'occupation_entertainment', 'occupation_executive'
'occupation_healthcare', 'occupation_homemaker'
'occupation_lawyer', 'occupation_librarian', 'occupation_marketing'
'occupation_none', 'occupation_other', 'occupation_programmer'
'occupation_retired', 'occupation_salesman', 'occupation_scientist'
'occupation_student', 'occupation_technician', 'occupation_writer',

]

See the MovieLens 100K README for additional information on the dataset: https://files.grouplens.org/
datasets/movielens/ml-100k-README.txt

Parameters
df_user (pd.DataFrame) – DataFrame of MovieLens 100K u.user containing columns of
user metadata. If None, will automatically read the output of read_movielens_df_user()

Returns
metadata_df

Return type
pd.DataFrame

7.2 MovieLens Model Training Pipeline

collie.movielens.run_movielens_example(epochs: int = 20, gpus: int = 0)→ None
Retrieve and split data, train and evaluate a model, and save it.

From the terminal, you can run this script with:

python collie/movielens/run.py --epochs 20

Parameters
• epochs (int) – Number of epochs for model training

• gpus (int) – Number of gpus to train on

100 Chapter 7. MovieLens Functions

https://files.grouplens.org/datasets/movielens/ml-100k-README.txt
https://files.grouplens.org/datasets/movielens/ml-100k-README.txt

collie, Release 1.3.1

7.3 Visualize MovieLens Predictions

collie.movielens.get_recommendation_visualizations(model: BasePipeline, user_id: int, df_user:
Optional[DataFrame] = None, df_item:
Optional[DataFrame] = None,
movielens_posters_df: Optional[DataFrame] =
None, num_user_movies_to_display: int = 10,
num_similar_movies: int = 10, filter_films: bool
= True, shuffle: bool = True, detailed: bool =
False, image_width: int = 500)→ str

Visualize Movielens 100K recommendations for a given user.

Parameters
• model (collie.model.BasePipeline) –

• user_id (int) – User ID to retrieve recommendations for

• df_user (DataFrame) – u.data from MovieLens data. This DataFrame must have
columns:

– user_id (starting at 1)

– item_id (starting at 1)

– rating (explicit ratings)

If None, will set to the output of read_movielens_df(decrement_ids=False).

• df_item (DataFrame) – u.item from MovieLens data. This DataFrame must have
columns:

– item_id (starting at 1)

– movie_title

If None, will set to the output of read_movielens_df_item()

• movielens_posters_df (DataFrame) – DataFrame containing item_ids from MovieLens
data and the poster url. This DataFrame must have columns:

– item_id (starting at 1)

– url

If None, will set to the output of read_movielens_posters_df()

• num_user_movies_to_display (int) – Number of movies rated 4 or 5 to display for the
user

• num_similar_movies (int) – Number of movies recommendations to display

• filter_films (bool) – Filter films out of recommendations if the user has already inter-
acted with them

• shuffle (bool) – Shuffle order of num_user_movies_to_display films

• detailed (bool) – Of the top N unfiltered recommendations, display how many movies the
user gave a positive and negative rating to

• image_width (int) – Image width for HTML images

7.3. Visualize MovieLens Predictions 101

collie, Release 1.3.1

Returns
html – HTML string of movies a user loved and the model recommended for a given user, ready
for displaying

Return type
str

102 Chapter 7. MovieLens Functions

CHAPTER

EIGHT

TUTORIALS

Tutorial Colab Link
Tutorial 01 - Prepare Data
Tutorial 02 - Matrix Factorization Model
Tutorial 03 - Advanced Matrix Factorization Model
Tutorial 04 - Partial Credit Loss - Matrix Factorization Model
Tutorial 05 - Hybrid Pretrained Matrix Factorization Model
Tutorial 06 - Multi-Stage Models
Tutorial 07 - Explicit Data Support in Collie

103

https://github.com/ShopRunner/collie/blob/main/tutorials/01_prepare_data.ipynb
https://colab.research.google.com/github/ShopRunner/collie/blob/main/tutorials/01_prepare_data.ipynb
https://github.com/ShopRunner/collie/blob/main/tutorials/02_matrix_factorization.ipynb
https://colab.research.google.com/github/ShopRunner/collie/blob/main/tutorials/02_matrix_factorization.ipynb
https://github.com/ShopRunner/collie/blob/main/tutorials/03_advanced_matrix_factorization.ipynb
https://colab.research.google.com/github/ShopRunner/collie/blob/main/tutorials/03_advanced_matrix_factorization.ipynb
https://github.com/ShopRunner/collie/blob/main/tutorials/04_partial_credit_loss.ipynb
https://colab.research.google.com/github/ShopRunner/collie/blob/main/tutorials/04_partial_credit_loss.ipynb
https://github.com/ShopRunner/collie/blob/main/tutorials/05_hybrid_model.ipynb
https://colab.research.google.com/github/ShopRunner/collie/blob/main/tutorials/05_hybrid_model.ipynb
https://github.com/ShopRunner/collie/blob/main/tutorials/06_multi_stage_models.ipynb
https://colab.research.google.com/github/ShopRunner/collie/blob/main/tutorials/06_multi_stage_models.ipynb
https://github.com/ShopRunner/collie/blob/main/tutorials/07_explicit_matrix_factorization.ipynb
https://colab.research.google.com/github/ShopRunner/collie/blob/main/tutorials/07_explicit_matrix_factorization.ipynb

collie, Release 1.3.1

104 Chapter 8. Tutorials

CHAPTER

NINE

CONTRIBUTING AND MAKING PRS

9.1 How to Contribute

We welcome contributions in the form of issues or pull requests!

We want this to be a place where all are welcome to discuss and contribute, so please note that this project is released
with a Contributor Code of Conduct. By participating in this project you agree to abide by its terms. Find the Code of
Conduct in the CONDUCT.md file on GitHub or in the Code of Conduct section of read the docs.

If you have a problem using Collie or see a possible improvement, open an issue in the GitHub issue tracker. Please be
as specific as you can.

If you see an open issue you’d like to be fixed, take a stab at it and open a PR!

9.2 Pull Requests

To create a PR against this library, please fork the project and work from there.

9.2.1 Steps

1. Fork the project via the Fork button on GitHub.

2. Clone the repo to your local disk.

3. Create a new branch for your PR.

git checkout -b my-awesome-new-feature

4. Install requirements (either in a virtual environment like below or the Docker container).

virtualenv venv
source venv/bin/activate
pip install -r requirements-dev.txt
pip install -r requirements.txt

5. Develop your feature

6. Submit a PR to main! Someone will review your code and merge your code into main when it is approved.

105

CODE-OF-CONDUCT.md

collie, Release 1.3.1

9.2.2 PR Checklist

• Ensure your code has followed the Style Guidelines listed below.

• Run the flake8 linter on your code.

source venv/bin/activate
flake8 collie tests

• Make sure you have written unit-tests where appropriate.

• Make sure the unit-tests all pass.

source venv/bin/activate
pytest -v

• Update the docs where appropriate. You can rebuild them with the commands below.

cd docs
make html

• Update the CHANGELOG.md and version.py files.

9.2.3 Style Guidelines

For the most part, this library follows PEP8 with a couple of exceptions.

• Lines can be up to 100 characters long.

• Docstrings should be numpy style docstrings.

• Your code should be Python 3 compatible.

• We prefer single quotes for one-line strings unless using double quotes allows us to avoid escaping internal single
quotes.

• When in doubt, follow the style of the existing code.

106 Chapter 9. Contributing and Making PRs

https://sphinxcontrib-napoleon.readthedocs.io/en/latest/example_numpy.html

CHAPTER

TEN

CONTRIBUTOR COVENANT CODE OF CONDUCT

10.1 Our Pledge

We as members, contributors, and leaders pledge to make participation in our community a harassment-free experience
for everyone, regardless of age, body size, visible or invisible disability, ethnicity, sex characteristics, gender identity
and expression, level of experience, education, socio-economic status, nationality, personal appearance, race, religion,
or sexual identity and orientation.

We pledge to act and interact in ways that contribute to an open, welcoming, diverse, inclusive, and healthy community.

10.2 Our Standards

Examples of behavior that contributes to a positive environment for our community include:

• Demonstrating empathy and kindness toward other people

• Being respectful of differing opinions, viewpoints, and experiences

• Giving and gracefully accepting constructive feedback

• Accepting responsibility and apologizing to those affected by our mistakes, and learning from the experience

• Focusing on what is best not just for us as individuals, but for the overall community

Examples of unacceptable behavior include:

• The use of sexualized language or imagery, and sexual attention or advances of any kind

• Trolling, insulting or derogatory comments, and personal or political attacks

• Public or private harassment

• Publishing others’ private information, such as a physical or email address, without their explicit permission

• Other conduct which could reasonably be considered inappropriate in a professional setting

107

collie, Release 1.3.1

10.3 Enforcement Responsibilities

Community leaders are responsible for clarifying and enforcing our standards of acceptable behavior and will take
appropriate and fair corrective action in response to any behavior that they deem inappropriate, threatening, offensive,
or harmful.

Community leaders have the right and responsibility to remove, edit, or reject comments, commits, code, wiki edits, is-
sues, and other contributions that are not aligned to this Code of Conduct, and will communicate reasons for moderation
decisions when appropriate.

10.4 Scope

This Code of Conduct applies within all community spaces, and also applies when an individual is officially representing
the community in public spaces. Examples of representing our community include using an official e-mail address,
posting via an official social media account, or acting as an appointed representative at an online or offline event.

10.5 Enforcement

Instances of abusive, harassing, or otherwise unacceptable behavior may be reported to the community leaders respon-
sible for enforcement by submitting this anonymous form or by sending an email to opensource@shoprunner.com. All
complaints will be reviewed and investigated promptly and fairly.

All community leaders are obligated to respect the privacy and security of the reporter of any incident.

10.6 Enforcement Guidelines

Community leaders will follow these Community Impact Guidelines in determining the consequences for any action
they deem in violation of this Code of Conduct:

10.6.1 1. Correction

Community Impact: Use of inappropriate language or other behavior deemed unprofessional or unwelcome in the
community.

Consequence: A private, written warning from community leaders, providing clarity around the nature of the violation
and an explanation of why the behavior was inappropriate. A public apology may be requested.

10.6.2 2. Warning

Community Impact: A violation through a single incident or series of actions.

Consequence: A warning with consequences for continued behavior. No interaction with the people involved, includ-
ing unsolicited interaction with those enforcing the Code of Conduct, for a specified period of time. This includes
avoiding interactions in community spaces as well as external channels like social media. Violating these terms may
lead to a temporary or permanent ban.

108 Chapter 10. Contributor Covenant Code of Conduct

https://forms.gle/11DcyKpYkVjmRDKV9
mailto:opensource@shoprunner.com

collie, Release 1.3.1

10.6.3 3. Temporary Ban

Community Impact: A serious violation of community standards, including sustained inappropriate behavior.

Consequence: A temporary ban from any sort of interaction or public communication with the community for a
specified period of time. No public or private interaction with the people involved, including unsolicited interaction
with those enforcing the Code of Conduct, is allowed during this period. Violating these terms may lead to a permanent
ban.

10.6.4 4. Permanent Ban

Community Impact: Demonstrating a pattern of violation of community standards, including sustained inappropriate
behavior, harassment of an individual, or aggression toward or disparagement of classes of individuals.

Consequence: A permanent ban from any sort of public interaction within the project community.

10.7 Attribution

This Code of Conduct is adapted from the Contributor Covenant, version 2.0, available at https://www.
contributor-covenant.org/version/2/0/code_of_conduct.html.

Community Impact Guidelines were inspired by Mozilla’s code of conduct enforcement ladder.

For answers to common questions about this code of conduct, see the FAQ at https://www.contributor-covenant.org/faq.
Translations are available at https://www.contributor-covenant.org/translations.

10.7. Attribution 109

https://www.contributor-covenant.org
https://www.contributor-covenant.org/version/2/0/code_of_conduct.html
https://www.contributor-covenant.org/version/2/0/code_of_conduct.html
https://github.com/mozilla/diversity
https://www.contributor-covenant.org/faq
https://www.contributor-covenant.org/translations

collie, Release 1.3.1

110 Chapter 10. Contributor Covenant Code of Conduct

CHAPTER

ELEVEN

COLLIE

Collie is a library for preparing, training, and evaluating implicit deep learning hybrid recommender systems, named
after the Border Collie dog breed.

Collie offers a collection of simple APIs for preparing and splitting datasets, incorporating item metadata directly into a
model architecture or loss, efficiently evaluating a model’s performance on the GPU, and so much more. Above all else
though, Collie is built with flexibility and customization in mind, allowing for faster prototyping and experimentation.

See the documentation for more details.

“We adopted 2 Border Collies a year ago and they are about 3 years old. They are completely obsessed
with fetch and tennis balls and it’s getting out of hand. They live in the fenced back yard and when anyone
goes out there they instantly run around frantically looking for a tennis ball. If there is no ball they will
just keep looking and will not let you pet them. When you do have a ball, they are 100% focused on it and
will not notice anything else going on around them, like it’s their whole world.”

—A Reddit thread on r/DogTraining

111

https://badge.fury.io/py/collie
https://pypi.org/project/collie/
https://github.com/ShopRunner/collie/actions/workflows/ci.yaml
https://collie.readthedocs.io/en/latest/?badge=latest
https://codecov.io/gh/ShopRunner/collie
https://github.com/ShopRunner/collie/blob/main/LICENSE
https://collie.readthedocs.io/en/latest/index.html
https://net-shoprunner-scratch-data-science.s3.amazonaws.com/njones/collie/collie-banner.png

collie, Release 1.3.1

11.1 Installation

pip install collie

Through July 2021, this library used to be under the name collie_recs. While this version is still available on PyPI,
it is no longer supported or maintained. All users of the library should use collie for the latest and greatest version
of the code!

11.2 Quick Start

11.2.1 Implicit Data

Creating and evaluating a matrix factorization model with implicit MovieLens 100K data is simple with Collie:

from collie.cross_validation import stratified_split
from collie.interactions import Interactions
from collie.metrics import auc, evaluate_in_batches, mapk, mrr
from collie.model import MatrixFactorizationModel, CollieTrainer
from collie.movielens import read_movielens_df
from collie.utils import convert_to_implicit

read in explicit MovieLens 100K data
df = read_movielens_df()

convert the data to implicit
df_imp = convert_to_implicit(df)

store data as ``Interactions``
interactions = Interactions(users=df_imp['user_id'],

items=df_imp['item_id'],
allow_missing_ids=True)

perform a data split
train, val = stratified_split(interactions)

train an implicit ``MatrixFactorization`` model
model = MatrixFactorizationModel(train=train,

val=val,
embedding_dim=10,
lr=1e-1,
loss='adaptive',
optimizer='adam')

trainer = CollieTrainer(model, max_epochs=10)
trainer.fit(model)
model.eval()

evaluate the model
auc_score, mrr_score, mapk_score = evaluate_in_batches(metric_list=[auc, mrr, mapk],

(continues on next page)

112 Chapter 11. collie

https://colab.research.google.com/github/ShopRunner/collie/blob/main/tutorials/quickstart.ipynb

collie, Release 1.3.1

(continued from previous page)

test_interactions=val,
model=model)

print(f'AUC: {auc_score}')
print(f'MRR: {mrr_score}')
print(f'MAP@10: {mapk_score}')

More complicated examples of implicit pipelines can be viewed for MovieLens 100K data here, in notebooks here, and
documentation here.

11.2.2 Explicit Data

Collie also handles the situation when you instead have explicit data, such as star ratings. Note how similar the pipeline
and APIs are compared to the implicit example above:

from collie.cross_validation import stratified_split
from collie.interactions import ExplicitInteractions
from collie.metrics import explicit_evaluate_in_batches
from collie.model import MatrixFactorizationModel, CollieTrainer
from collie.movielens import read_movielens_df

from torchmetrics import MeanAbsoluteError, MeanSquaredError

read in explicit MovieLens 100K data
df = read_movielens_df()

store data as ``Interactions``
interactions = ExplicitInteractions(users=df['user_id'],

items=df['item_id'],
ratings=df['rating'])

perform a data split
train, val = stratified_split(interactions)

train an implicit ``MatrixFactorization`` model
model = MatrixFactorizationModel(train=train,

val=val,
embedding_dim=10,
lr=1e-2,
loss='mse',
optimizer='adam')

trainer = CollieTrainer(model, max_epochs=10)
trainer.fit(model)
model.eval()

evaluate the model
mae_score, mse_score = explicit_evaluate_in_batches(metric_list=[MeanAbsoluteError(),

MeanSquaredError()],
test_interactions=val,

(continues on next page)

11.2. Quick Start 113

https://github.com/ShopRunner/collie/blob/main/collie/movielens/run.py
https://github.com/ShopRunner/collie/tree/main/tutorials
https://collie.readthedocs.io/en/latest/index.html
https://colab.research.google.com/github/ShopRunner/collie/blob/main/tutorials/quickstart-explicit.ipynb

collie, Release 1.3.1

(continued from previous page)

model=model)

print(f'MAE: {mae_score}')
print(f'MSE: {mse_score}')

11.3 Comparison With Other Open-Source Recommendation Li-
braries

On some smaller screens, you might have to scroll right to see the full table.

Aspect Included in Library Col-
lie

Implicit data support for when we only know when a user interacts with an
item or not, not the explicit rating the user gave the item

X X X X X

Explicit data support for when we know the explicit rating the user gave the
item

X X X X X X X

Support for side-data incorporated directly into the models X X X X
Support a flexible framework for new model architectures and experimen-
tation

X X X X X

Deep learning libraries utilizing speed-ups with a GPU and able to imple-
ment new, cutting-edge deep learning algorithms

X X X X X

Automatic support for multi-GPU training X
Actively supported and maintained X X X X X X
Type annotations for classes, methods, and functions X X
Scalable for larger, out-of-memory datasets X X
Includes model zoo with two or more model architectures implemented X X X
Includes implicit loss functions for training and metric functions for model
evaluation

X X X X

Includes adaptive loss functions for multiple negative examples X X X
Includes **loss functions with partial credit for side-data** X

The following table notes shows the results of an experiment training and evaluating recommendation models in some
popular implicit recommendation model frameworks on a common MovieLens 10M dataset. The data was split via a
90/5/5 stratified data split. Each model was trained for a maximum of 40 epochs using an embedding dimension of 32.
For each model, we used default hyperparameters (unless otherwise noted below).

Model MAP@10 Score Notes
Randomly initialized, untrained model 0.0001
Logistic MF 0.0128 Using the CUDA implementation.
LightFM with BPR Loss 0.0180
ALS 0.0189 Using the CUDA implementation.
BPR 0.0301 Using the CUDA implementation.
Spotlight 0.0376 Using adaptive hinge loss.
LightFM with WARP Loss 0.0412
Collie MatrixFactorizationModel 0.0425 Using a separate SGD bias optimizer.

At ShopRunner, we have found Collie models outperform comparable LightFM models with up to 64% improved
MAP@10 scores.

114 Chapter 11. collie

https://collie.readthedocs.io/en/latest/loss.html
https://grouplens.org/datasets/movielens/10m/
mailto:MAP@10
https://implicit.readthedocs.io/en/latest/lmf.html
https://making.lyst.com/lightfm/docs/home.html
https://implicit.readthedocs.io/en/latest/als.html
https://implicit.readthedocs.io/en/latest/bpr.html
https://maciejkula.github.io/spotlight/index.html
https://making.lyst.com/lightfm/docs/home.html

collie, Release 1.3.1

11.4 Development

To run locally, begin by creating a data path environment variable:

Define where on your local hard drive you want to store data. It is best if this
location is not inside the repo itself. An example is below
export DATA_PATH=$HOME/data/collie

Run development from within the Docker container:

docker build -t collie .

run the container in interactive mode, leaving port ``8888`` open for Jupyter
docker run \

-it \
--rm \
-v "${DATA_PATH}:/collie/data/" \
-v "${PWD}:/collie" \
-p 8888:8888 \
collie /bin/bash

11.4.1 Run on a GPU:

docker build -t collie .

run the container in interactive mode, leaving port ``8888`` open for Jupyter
docker run \

-it \
--rm \
--gpus all \
-v "${DATA_PATH}:/collie/data/" \
-v "${PWD}:/collie" \
-p 8888:8888 \
collie /bin/bash

11.4.2 Start JupyterLab

To run JupyterLab, start the container and execute the following:

jupyter lab --ip 0.0.0.0 --no-browser --allow-root

Connect to JupyterLab here: http://localhost:8888/lab

11.4. Development 115

http://localhost:8888/lab

collie, Release 1.3.1

11.4.3 Unit Tests

Library unit tests in this repo are to be run in the Docker container:

execute unit tests
pytest --cov-report term --cov=collie

Note that a handful of tests require the MovieLens 100K dataset to be downloaded (~5MB in size), meaning that either
before or during test time, there will need to be an internet connection. This dataset only needs to be downloaded a
single time for use in both unit tests and tutorials.

11.4.4 Docs

The Collie library supports Read the Docs documentation. To compile locally,

cd docs
make html

open local docs
open build/html/index.html

116 Chapter 11. collie

https://files.grouplens.org/datasets/movielens/ml-100k.zip

INDEX

A
adaptive_bpr_loss() (in module collie.loss), 30
adaptive_hinge_loss() (in module collie.loss), 31
advance_stage() (collie.model.MultiStagePipeline

method), 86
ApproximateNegativeSamplingInteractionsDataLoader

(class in collie.interactions), 14
Args (collie.interactions.ApproximateNegativeSamplingInteractionsDataLoader

attribute), 16
Args (collie.interactions.InteractionsDataLoader at-

tribute), 13
auc() (in module collie.metrics), 91

B
BasePipeline (class in collie.model), 79
bpr_loss() (in module collie.loss), 28

C
calculate_loss() (collie.model.BasePipeline

method), 80
checkpoint_callback (collie.model.CollieTrainer

property), 72
checkpoint_callbacks (collie.model.CollieTrainer

property), 72
ckpt_path (collie.model.CollieTrainer property), 72
ColdStartModel (class in collie.model), 60
CollaborativeMetricLearningModel (class in col-

lie.model), 47
CollieMinimalTrainer (class in collie.model), 77
CollieTrainer (class in collie.model), 68
configure_optimizers() (collie.model.BasePipeline

method), 80
configure_optimizers() (col-

lie.model.MultiStagePipeline method), 86
convert_to_implicit (class in collie.utils), 94
create_ratings_matrix (class in collie.utils), 93
current_epoch (collie.model.CollieTrainer property),

72

D
DeepFM (class in collie.model), 53

default_root_dir (collie.model.CollieTrainer prop-
erty), 72

device_ids (collie.model.CollieTrainer property), 73
df_to_html (class in collie.utils), 95
df_to_interactions (class in collie.utils), 93

E
early_stopping_callback (col-

lie.model.CollieTrainer property), 73
early_stopping_callbacks (col-

lie.model.CollieTrainer property), 73
enable_validation (collie.model.CollieTrainer prop-

erty), 73
estimated_stepping_batches (col-

lie.model.CollieTrainer property), 73
evaluate_in_batches() (in module collie.metrics), 89
explicit_evaluate_in_batches() (in module col-

lie.metrics), 90
ExplicitInteractions (class in collie.interactions), 9

F
fit() (collie.model.CollieMinimalTrainer method), 78
fit() (collie.model.CollieTrainer method), 73
forward() (collie.model.BasePipeline method), 81
forward() (collie.model.ColdStartModel method), 63
forward() (collie.model.CollaborativeMetricLearningModel

method), 49
forward() (collie.model.DeepFM method), 55
forward() (collie.model.HybridModel method), 67
forward() (collie.model.HybridPretrainedModel

method), 59
forward() (collie.model.MatrixFactorizationModel

method), 40
forward() (collie.model.MLPMatrixFactorizationModel

method), 43
forward() (collie.model.NeuralCollaborativeFiltering

method), 52
forward() (collie.model.NonlinearMatrixFactorizationModel

method), 46
freeze_embeddings() (col-

lie.model.HybridPretrainedModel method),
59

117

collie, Release 1.3.1

G
get_item_predictions() (collie.model.BasePipeline

method), 81
get_movielens_metadata() (in module col-

lie.movielens), 99
get_recommendation_visualizations() (in module

collie.movielens), 101
get_user_metadata() (in module collie.movielens),

100
get_user_predictions() (collie.model.BasePipeline

method), 81
global_step (collie.model.CollieTrainer property), 73

H
HDF5Interactions (class in collie.interactions), 11
HDF5InteractionsDataLoader (class in col-

lie.interactions), 18
head() (collie.interactions.ExplicitInteractions method),

10
head() (collie.interactions.HDF5Interactions method),

11
head() (collie.interactions.Interactions method), 9
hinge_loss() (in module collie.loss), 29
HybridModel (class in collie.model), 63
HybridPretrainedModel (class in collie.model), 56

I
Interactions (class in collie.interactions), 8
interactions (collie.interactions.ApproximateNegativeSamplingInteractionsDataLoader

attribute), 16
interactions (collie.interactions.InteractionsDataLoader

attribute), 12
InteractionsDataLoader (class in collie.interactions),

12
is_last_batch (collie.model.CollieTrainer property),

74
item_bucket_item_similarity() (col-

lie.model.ColdStartModel method), 63
item_item_similarity() (collie.model.BasePipeline

method), 82

L
load_from_hybrid_model() (col-

lie.model.HybridPretrainedModel method),
59

M
mapk() (in module collie.metrics), 92
mat (collie.interactions.ApproximateNegativeSamplingInteractionsDataLoader

property), 17
mat (collie.interactions.HDF5InteractionsDataLoader

property), 20
mat (collie.interactions.InteractionsDataLoader prop-

erty), 14

MatrixFactorizationModel (class in collie.model), 37
max_epochs (collie.model.CollieMinimalTrainer prop-

erty), 78
max_epochs (collie.model.CollieTrainer property), 74
MLPMatrixFactorizationModel (class in col-

lie.model), 41
model (collie.model.CollieTrainer property), 74
mrr() (in module collie.metrics), 92
MultiStagePipeline (class in collie.model), 83

N
NeuralCollaborativeFiltering (class in col-

lie.model), 50
NonlinearMatrixFactorizationModel (class in col-

lie.model), 44
num_devices (collie.model.CollieTrainer property), 74
num_interactions (col-

lie.interactions.ApproximateNegativeSamplingInteractionsDataLoader
property), 17

num_interactions (col-
lie.interactions.HDF5InteractionsDataLoader
property), 20

num_interactions (col-
lie.interactions.InteractionsDataLoader
property), 14

num_items (collie.interactions.ApproximateNegativeSamplingInteractionsDataLoader
property), 17

num_items (collie.interactions.HDF5InteractionsDataLoader
property), 20

num_items (collie.interactions.InteractionsDataLoader
property), 14

num_negative_samples (col-
lie.interactions.ApproximateNegativeSamplingInteractionsDataLoader
property), 17

num_negative_samples (col-
lie.interactions.ExplicitInteractions property),
10

num_negative_samples (col-
lie.interactions.HDF5InteractionsDataLoader
property), 20

num_negative_samples (col-
lie.interactions.InteractionsDataLoader
property), 14

num_users (collie.interactions.ApproximateNegativeSamplingInteractionsDataLoader
property), 17

num_users (collie.interactions.HDF5InteractionsDataLoader
property), 20

num_users (collie.interactions.InteractionsDataLoader
property), 14

O
on_fit_start() (collie.model.BasePipeline method),

82

118 Index

collie, Release 1.3.1

optimizer_step() (collie.model.MultiStagePipeline
method), 86

P
pandas_df_to_hdf5 (class in collie.utils), 95
predict() (collie.model.CollieTrainer method), 74
prediction_writer_callbacks (col-

lie.model.CollieTrainer property), 74
progress_bar_callback (collie.model.CollieTrainer

property), 74

R
random_split() (in module collie.cross_validation), 22
read_movielens_df() (in module collie.movielens), 97
read_movielens_df_item() (in module col-

lie.movielens), 98
read_movielens_posters_df() (in module col-

lie.movielens), 99
remove_users_with_fewer_than_n_interactions

(class in collie.utils), 94
reset_parameters() (collie.model.ScaledEmbedding

method), 86
reset_parameters() (collie.model.ZeroEmbedding

method), 87
reset_predict_dataloader() (col-

lie.model.CollieTrainer method), 74
reset_test_dataloader() (col-

lie.model.CollieTrainer method), 74
reset_train_dataloader() (col-

lie.model.CollieTrainer method), 75
reset_val_dataloader() (collie.model.CollieTrainer

method), 75
run_movielens_example() (in module col-

lie.movielens), 100

S
save_checkpoint() (collie.model.CollieTrainer

method), 75
save_model() (collie.model.BasePipeline method), 82
save_model() (collie.model.HybridModel method), 67
save_model() (collie.model.HybridPretrainedModel

method), 59
ScaledEmbedding (class in collie.model), 86
set_stage() (collie.model.ColdStartModel method), 63
set_stage() (collie.model.MultiStagePipeline method),

86
stratified_split() (in module col-

lie.cross_validation), 22

T
tail() (collie.interactions.ExplicitInteractions method),

10
tail() (collie.interactions.HDF5Interactions method),

11

tail() (collie.interactions.Interactions method), 9
test() (collie.model.CollieTrainer method), 75
time_since_start() (collie.utils.Timer method), 96
timecheck() (collie.utils.Timer method), 96
Timer (class in collie.utils), 96
toarray() (collie.interactions.ExplicitInteractions

method), 10
toarray() (collie.interactions.Interactions method), 9
todense() (collie.interactions.ExplicitInteractions

method), 11
todense() (collie.interactions.Interactions method), 9
train_dataloader() (collie.model.BasePipeline

method), 82
training_epoch_end() (collie.model.BasePipeline

method), 82
training_step() (collie.model.BasePipeline method),

82
trunc_normal (class in collie.utils), 96
tune() (collie.model.CollieTrainer method), 75

U
unfreeze_embeddings() (col-

lie.model.HybridPretrainedModel method),
59

user_user_similarity() (collie.model.BasePipeline
method), 83

V
val_dataloader() (collie.model.BasePipeline

method), 83
validate() (collie.model.CollieTrainer method), 76
validation_epoch_end() (collie.model.BasePipeline

method), 83
validation_step() (collie.model.BasePipeline

method), 83

W
warp_loss() (in module collie.loss), 32

Z
ZeroEmbedding (class in collie.model), 87

Index 119

	Interactions
	Datasets
	Implicit Interactions Dataset
	Explicit Interactions Dataset
	HDF5 Interactions Dataset

	DataLoaders
	Interactions DataLoader
	Approximate Negative Sampling Interactions DataLoader
	HDF5 Approximate Negative Sampling Interactions DataLoader

	Cross Validation
	Random Split
	Stratified Split

	Losses
	Standard Losses
	BPR Loss
	Hinge Loss

	Adaptive Losses
	Adaptive BPR Loss
	Adaptive Hinge Loss
	WARP Loss

	Models
	Standard Models
	Matrix Factorization Model
	Multilayer Perceptron Matrix Factorization Model
	Nonlinear Embeddings Matrix Factorization Model
	Collaborative Metric Learning Model
	Neural Collaborative Filtering (NeuCF)
	Deep Factorization Machine (DeepFM)

	Hybrid Models
	Hybrid Pretrained Matrix Factorization Model

	Multi-Stage Models
	Cold Start Matrix Factorization Model
	Hybrid Matrix Factorization Model

	Trainers
	PyTorch Lightning Trainer
	Non- PyTorch Lightning Trainer

	Model Templates
	Base Collie Pipeline Template
	Base Collie Multi-Stage Pipeline Template

	Layers
	Scaled Embedding
	Zero Embedding

	Evaluation Metrics
	Evaluate in Batches
	Implicit Evaluate in Batches
	Explicit Evaluate in Batches

	Implicit Metrics
	AUC
	MAP@K
	MRR

	Utility Functions
	Create Ratings Matrix
	DataFrame to Interactions
	Convert to Implicit Ratings
	Remove Users With Fewer Than n Interactions
	Pandas DataFrame to HDF5 Format
	DataFrame to HTML
	Timer Class
	Truncated Normal Initialization

	MovieLens Functions
	Get MovieLens 100K Data
	Read MovieLens 100K Interactions Data
	Read MovieLens 100K Item Data
	Read MovieLens 100K Posters Data
	Format MovieLens 100K Item Metadata Data
	Format MovieLens 100K User Metadata Data

	MovieLens Model Training Pipeline
	Visualize MovieLens Predictions

	Tutorials
	Contributing and Making PRs
	How to Contribute
	Pull Requests
	Steps
	PR Checklist
	Style Guidelines

	Contributor Covenant Code of Conduct
	Our Pledge
	Our Standards
	Enforcement Responsibilities
	Scope
	Enforcement
	Enforcement Guidelines
	1. Correction
	2. Warning
	3. Temporary Ban
	4. Permanent Ban

	Attribution

	collie
	Installation
	Quick Start
	Implicit Data
	Explicit Data

	Comparison With Other Open-Source Recommendation Libraries
	Development
	Run on a GPU:
	Start JupyterLab
	Unit Tests
	Docs

	Index

